This is my introduction to a series of posts explaining how to create an end-to-end Machine Learning system.

Starting with one problem

Our IRIS Development Community has several posts without tags or wrong tagged. As the posts keep growing the organization
of each tag and the experience of any community member browsing the subjects tends to decrease.

First solutions in mind

We can think some usual solutions for this scenario, like:

5 11
2 395

This is the third post of a series explaining how to create an end-to-end Machine Learning system.

Training a Machine Learning Model

When you work with machine learning is common to hear this work: training. Do you what training mean in a ML Pipeline?
Training could mean all the development process of a machine learning model OR the specific point in all development process
that uses training data and results in a machine learning model.

4 10
2 273

Hi Community!

Just want to share with you an exercise I made to create "my own" chat with GPT in Telegram.

It became possible because of two components on Open Exchange: Telegram Adapter by @Nikolay Soloviev and IRIS Open-AI by @Kurro Lopez

So with this example you can setup your own chat with ChatGPT in Telegram.

Let's see how to make it work!

6 8
1 280
Article
· Jun 12 3m read
LangChain fixed the SQL for me

This article is a simple quick starter (what I did was) with SqlDatabaseChain.

Hope this ignites some interest.

Many thanks to:

sqlalchemy-iris author @Dmitry Maslennikov

Your project made this possible today.

The article script uses openai API so caution not to share table information and records externally, that you didn't intend to.

A local model could be plugged in , instead if needed.

9 7
3 2.1K
Article
· Jun 19 8m read
Open AI integration with IRIS

As you all know, the world of artificial intelligence is already here, and everyone wants to use it to their benefit.

There are many platforms that offer artificial intelligence services for free, by subscription or private ones. However, the one that stands out because of the amount of "noise" it made in the world of computing is Open AI, mainy thanks to its most renowned services: ChatGPT and DALL-E.

14 6
2 781

Currently, many digital artists use generative AI technology as a support to accelerate the delivery of their work. Nowadays it is possible to generate a corresponding image from a text sentence. There are several market solutions for this, including some available to be used through APIs. See some at this link: https://www.analyticsvidhya.com/blog/2023/08/ai-image-generators/.

1 5
2 115

On this GitHub you can find all the information on how to use a HuggingFace machine learning / AI model on the IRIS Framework using python.

1. iris-huggingface

Usage of Machine Learning models in IRIS using Python; For text-to-text, text-to-image or image-to-image models.

6 5
1 448

FHIR has revolutionized the healthcare industry by providing a standardized data model for building healthcare applications and promoting data exchange between different healthcare systems. As the FHIR standard is based on modern API-driven approaches, making it more accessible to mobile and web developers. However, interacting with FHIR APIs can still be challenging especially when it comes to querying data using natural language.

5 4
2 528

​Keywords: ChatGPT, COS, Lookup Table, IRIS, AI

Purpose


Here is another quick note before we move on to GPT-4 assisted automation journey. Below are some "little" helps ChatGPT had already been offering, here and there, during daily works.

And what could be the perceived gaps, risks and traps to LLMs assisted automation, if you happen to explore this path too. I'd also love to hear anyone's use cases and experiences on this front too.

5 3
1 442

The last time that I created a playground for experimenting with machine learning using Apache Spark and an InterSystems data platform, see Machine Learning with Spark and Caché, I installed and configured everything directly on my laptop: Caché, Python, Apache Spark, Java, some Hadoop libraries, to name a few. It required some effort, but eventually it worked.

8 3
7 850

A few months ago, I read this interesting article from MIT Technology Review, explaing how COVID-19 pandemic are issuing challenges to IT teams worldwide regarding their machine learning (ML) systems.

Such article inspire me to think about how to deal with performance issues after a ML model was deployed.

2 2
0 385
Article
· Jul 27, 2018 4m read
Load a ML model into InterSystems IRIS

Hi all. Today we are going to upload a ML model into IRIS Manager and test it.

Note: I have done the following on Ubuntu 18.04, Apache Zeppelin 0.8.0, Python 3.6.5.

Introduction

These days many available different tools for Data Mining enable you to develop predictive models and analyze the data you have with unprecedented ease. InterSystems IRIS Data Platform provide a stable foundation for your big data and fast data applications, providing interoperability with modern DataMining tools.

6 2
2 1.2K

Keywords: Jupyter Notebook, Tensorflow GPU, Keras, Deep Learning, MLP, and HealthShare

1. Purpose and Objectives

In previous"Part I" we have set up a deep learning demo environment. In this "Part II" we will test what we could do with it.

Many people at my age had started with the classic MLP (Multi-Layer Perceptron) model. It is intuitive hence conceptually easier to start with.

1 2
3 837

In this article, I am trying to identify the multiple areas to develop the features we can able to do using python and machine learning.

Each hospital is every moment trying to improve its quality of service and efficiency using technology and services.

The healthcare sector is one of the very big and vast areas of service options available and python is one of the best technology for doing machine learning.

In every hospital, humans will come with some feelings, if this feeling will understand using technology is make a chance to provide better service.

2 2
2 290

Keywords: IRIS, IntegratedML, Machine Learning, Covid-19, Kaggle

Purpose

Recently I noticed a Kaggle dataset for the prediction of whether a Covid-19 patient will be admitted to ICU. It is a spreadsheet of 1925 encounter records of 231 columns of vital signs and observations, with the last column of "ICU" being 1 for Yes or 0 for No. The task is to predict whether a patient will be admitted to ICU based on known data.

2 1
1 726
Article
· Apr 8, 2019 4m read
Should we use computers?

The titular question was quite relevant and often discussed some thirty years ago. The thought went: “Sure, there are industries where computers are the norm, but in my industry we got just fine so far, the benefits are questionable, problems innumerable and unsolved. Can we continue as before or should we embrace this new technology?”

Today, everyone asks the same question but about Machine Learning and Artificial Intelligence. The doubts are the same – lack of expertise, lack of known path, perceived irrelevancy to the industry.

Yet, as before, the correct, even the only possible answer is a resounding yes. Read on to find out why.

2 1
1 319

Diabetes can be discovered from some parameters well known to the medical community. In this way, in order to help the medical community and computerized systems, especially AI, the National Institute of Diabetes and Digestive and Kidney Diseases published a very useful dataset for training ML algorithms in the detection/prediction of diabetes. This publication can be found on the largest and best known data repository for ML, Kaggle at https://www.kaggle.com/datasets/mathchi/diabetes-data-set.

6 1
1 245