image

Hi Community,

In this article, I will introduce my application iris-RAG-Gen .

Iris-RAG-Gen is a generative AI Retrieval-Augmented Generation (RAG) application that leverages the functionality of IRIS Vector Search to personalize ChatGPT with the help of the Streamlit web framework, LangChain, and OpenAI. The application uses IRIS as a vector store.

Application Features

  • Ingest Documents (PDF or TXT) into IRIS
  • Chat with the selected Ingested document
  • Delete Ingested Documents
  • OpenAI ChatGPT

5 1
0 87

image

Hi Community

In this article, I will introduce my application irisChatGPT which is built on LangChain Framework.

First of all, let us have a brief overview of the framework.

The entire world is talking about ChatGPT and how Large Language Models(LLMs) have become so powerful and has been performing beyond expectations, giving human-like conversations. This is just the beginning of how this can be applied to every enterprise and every domain!

9 13
7 1.7K

Hi Community,

This is a detailed, candid walkthrough of the IRIS AI Studio platform. I speak out loud on my thoughts while trying different examples, some of which fail to deliver expected results - which I believe is a need for such a platform to explore different models, configurations and limitations. This will be helpful if you're interested in how to build 'Chat with PDF' or data recommendation systems using IRIS DB and LLM models.

https://www.youtube.com/embed/bcu1gt0BDhY
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

0 1
1 90

In the previous article, we saw in detail about Connectors, that let user upload their file and get it converted into embeddings and store it to IRIS DB. In this article, we'll explore different retrieval options that IRIS AI Studio offers - Semantic Search, Chat, Recommender and Similarity.

1 0
1 100

The introduction of InterSystems' "Vector Search" marks a paradigm shift in data processing. This cutting-edge technology employs an embedding model to transform unstructured data, such as text, into structured vectors, resulting in significantly enhanced search capabilities. Inspired by this breakthrough, we've developed a specialized search engine tailored to companies.

2 1
1 80

Hi Community!

As an AI language model, ChatGPT is capable of performing a variety of tasks like language translation, writing songs, answering research questions, and even generating computer code. With its impressive abilities, ChatGPT has quickly become a popular tool for various applications, from chatbots to content creation.
But despite its advanced capabilities, ChatGPT is not able to access your personal data. So we need to build a custom ChatGPT AI by using LangChain Framework:

Below are the steps to build a custom ChatGPT:

  • Step 1: Load the document

  • Step 2: Splitting the document into chunks

  • Step 3: Use Embedding against Chunks Data and convert to vectors

  • Step 4: Save data to the Vector database

  • Step 5: Take data (question) from the user and get the embedding

  • Step 6: Connect to VectorDB and do a semantic search

  • Step 7: Retrieve relevant responses based on user queries and send them to LLM(ChatGPT)

  • Step 8: Get an answer from LLM and send it back to the user

For more details, please Read this article

3 6
0 285

Hi Members,

Watch this video to learn a new innovative way to use a large language model, such as ChatGPT, to automatically categorize Patient Portal messages to serve patients better:

Triage Patient Portal Messages Using ChatGPT @ Global Summit 2023

https://www.youtube.com/embed/D0V09aGZK1E
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

1 0
0 102

Introduction

This article aims to explore how the FHIR-PEX system operates and was developed, leveraging the capabilities of InterSystems IRIS.

Streamlining the identification and processing of medical examinations in clinical diagnostic centers, our system aims to enhance the efficiency and accuracy of healthcare workflows. By integrating FHIR standards with InterSystems IRIS database Java-PEX, the system help healthcare professionals with validation and routing capabilities, ultimately contributing to improved decision-making and patient care.

2 3
0 243


Hi Community

In this article, I will introduce my application IRIS-GenLab.

IRIS-GenLab is a generative AI Application that leverages the functionality of Flask web framework, SQLALchemy ORM, and InterSystems IRIS to demonstrate Machine Learning, LLM, NLP, Generative AI API, Google AI LLM, Flan-T5-XXL model, Flask Login and OpenAI ChatGPT use cases.

6 0
1 296

FHIR has revolutionized the healthcare industry by providing a standardized data model for building healthcare applications and promoting data exchange between different healthcare systems. As the FHIR standard is based on modern API-driven approaches, making it more accessible to mobile and web developers. However, interacting with FHIR APIs can still be challenging especially when it comes to querying data using natural language.

5 4
2 995

With rapid evolution of Generative AI, to embrace it and help us improve productivity is a must. Let's discuss and embrace the ideas of how we can leverage Generative AI to improve our routine work.

1 0
1 152

Hi folks!

How can I change the production setting programmatically?

I have a production that is a solution that uses some api-keys, which are the parameters of Business Operations but of course cannot be hard-coded into the source code.

E.g. here is the example of such a production that runs a connection of Telegram and ChatGPT.

And it can be installed as:

zpm "install telegram-gpt"

But now one needs to setup the key manually before using the production, having the following setting:

I'd like to set up it programmatically so one could install it as:

zpm "install telegram-gpt -D Token=sometoken"

How can I make it work?

0 18
0 614

Problem

In a fast-paced clinical environment, where quick decision-making is crucial, the lack of streamlined document storage and access systems poses several obstacles. While storage solutions for documents exist (e.g, FHIR), accessing and effectively searching for specific patient data within those documents meaningfully can be a significant challenge.

7 0
2 479

As an AI language model, ChatGPT is capable of performing a variety of tasks like language translation, writing songs, answering research questions, and even generating computer code. With its impressive abilities, ChatGPT has quickly become a popular tool for various applications, from chatbots to content creation.
But despite its advanced capabilities, ChatGPT is not able to access your personal data. So in this article, I will demonstrate below steps to build custom ChatGPT AI by using LangChain Framework:

4 0
1 11.5K

Demonstration example for the current Grand Prix contest for use of a more complex Parameter template to test the AI.

Interview Questions

There is documentation. A recruitment consultant wants to quickly challenge candidates with some relevant technical questions to a role.

Can they automate making a list of questions and answers from the available documentation?

Interview Answers and Learning

One of the most effective ways to cement new facts into accessible long term memory is with phased recall.

2 0
0 1.2K

Hi Community!

Just want to share with you an exercise I made to create "my own" chat with GPT in Telegram.

It became possible because of two components on Open Exchange: Telegram Adapter by @Nikolay Solovyev and IRIS Open-AI by @Kurro Lopez

So with this example you can setup your own chat with ChatGPT in Telegram.

Let's see how to make it work!

6 8
1 453

In recent years, artificial intelligence technologies for text generation have developed significantly. For example, text generation models based on neural networks can produce texts that are almost indistinguishable from texts written by humans.
ChatGPT is one such service. It is a huge neural network trained on a large number of texts, which can generate texts on various topics and be matched to a given context.

4 1
0 369

​Keywords: ChatGPT, COS, Lookup Table, IRIS, AI

Purpose


Here is another quick note before we move on to GPT-4 assisted automation journey. Below are some "little" helps ChatGPT had already been offering, here and there, during daily works.

And what could be the perceived gaps, risks and traps to LLMs assisted automation, if you happen to explore this path too. I'd also love to hear anyone's use cases and experiences on this front too.

5 3
1 529

Fun or No Fun - how serious is it?


Large language models are stirring up some phenomena in recent months. So inevitably I was playing ChatGPT too over last weekend, to probe whether it would be a complimentary to some BERT based "traditional" AI chatbots I was knocking up, or rather would it simply sweep them away.

9 3
1 978