I am often asked by customers, vendors or internal teams to explain CPU capacity planning for large production databases running on VMware vSphere.

In summary there are a few simple best practices to follow for sizing CPU for large production databases:

  • Plan for one vCPU per physical CPU core.
  • Consider NUMA and ideally size VMs to keep CPU and memory local to a NUMA node.
  • Right-size virtual machines. Add vCPUs only when needed.

Generally this leads to a couple of common questions:

50
0 6 4,895

This post will show you an approach to size shared memory requirements for database applications running on InterSystems data platforms including global and routine buffers, gmheap, and locksize as well as some performance tips you should consider when configuring servers and when virtualizing Caché applications. As ever when I talk about Caché I mean all the data platform (Ensemble, HealthShare, iKnow and Caché).


A list of other posts in this series is here

240
6 3 7,155

** Revised Feb-12, 2018

While this article is about InterSystems IRIS, it also applies to Caché, Ensemble, and HealthShare distributions.

Introduction

Memory is managed in pages.  The default page size is 4KB on Linux systems.  Red Hat Enterprise Linux 6, SUSE Linux Enterprise Server 11, and Oracle Linux 6 introduced a method to provide an increased page size in 2MB or 1GB sizes depending on system configuration know as HugePages.

At first HugePages required to be assigned at boot time, and if not managed or calculated appropriately could result in wasted resources.  As a result various Linux distributions introduced Transparent HugePages with the 2.6.38 kernel as enabled by default.  This was meant as a means to automate creating, managing, and using HugePages.  Prior kernel versions may have this feature as well however may not be marked as [always] and potentially set to [madvise].  

Transparent Huge Pages (THP) is a Linux memory management system that reduces the overhead of Translation Lookaside Buffer (TLB) lookups on machines with large amounts of memory by using larger memory pages.  However in current Linux releases THP can only map individual process heap and stack space.

40
2 8 3,361

One of the great availability and scaling features of Caché is Enterprise Cache Protocol (ECP). With consideration during application development distributed processing using ECP allows a scale out architecture for Caché applications. Application processing can scale to very high rates from a single application server to the processing power of up to 255 application servers with no application changes.

90
1 6 1,816

This post provides guidelines for configuration, system sizing and capacity planning when deploying Caché 2015 and later on a VMware ESXi 5.5 and later environment.

110
5 0 4,421

Myself and the other Technology Architects often have to explain to customers and vendors Caché IO requirements and the way that Caché applications will use storage systems. The following tables are useful when explaining typical Caché IO profile and requirements for a transactional database application with customers and vendors.  The original tables were created by Mark Bolinsky.

In future posts I will be discussing more about storage IO so am also posting these tables now as a reference for those articles. 

90
2 5 1,875

Index

This is a list of all the posts in the data platforms capacity planning and performance series in order. Also a general list of my other posts. I will update as new posts in the series are added.


You will notice that I wrote some of the posts before IRIS was released and refer to Caché. I will revisit the posts over time, but in the meantime; Generally, the advice for configuration is the same for Caché and IRIS. Some command names may have changed; the most obvious example is that anywhere you see ^pButtons command, you can replace it with ^SystemPerformance.

Capacity Planning and Performance Series

Generally posts build on previous, but you can also just dive in to subjects that look interesting.


130
3 0 4,142

++Update: August 2, 2018

This article provides a reference architecture as a sample for providing robust performing and highly available applications based on InterSystems Technologies that are applicable to Caché, Ensemble, HealthShare, TrakCare, and associated embedded technologies such as DeepSee, iKnow, Zen and Zen Mojo.

Azure has two different deployment models for creating and working with resources: Azure Classic and Azure Resource Manager. The information detailed in this article is based on the Azure Resource Manager model (ARM).

110
0 4 9,142