Introducing Smart Clinical Sidechick — the intelligent, no-drama partner your EHR wishes it could be. She reads FHIR data in real time, interprets lab results without ghosting, and explains clinical alerts like she actually cares. Built with GPT-4 brains and YAML sass, she’s not here to replace your main EHR—just to make it look bad. Tired of irrelevant alerts and cryptic warnings? Sidechick serves up real, explainable insights, not vague “elevated risk” vibes. And when your backend crashes, she doesn’t panic—she self-heals.

0 0
0 21

It helps to remove special characters, such as non-utf-8 characters either control characters or unicode characters from text that is not printable or can't be parsed by downstream systems.

There is also $C(32) in this condition; sometimes NBSP appears in the text and it will not be recognized by TIE, but downstream it displays as "?".

2 4
0 77

An extension “extends” or enhances a FHIR resource or a data element in a custom way. The extension can be added to the root of a resource, such as “Patient.ethnicity” in US Core profile, and they can be added to individual elements such as HumanName, Address or Identifier.

Did you know that you can also add an extension to a primitive data type?

Primitives usually store a single item and are the most basic element in FHIR. For example: "Keren", false, 1234, 12/08/2024 etc.

For example, the patient resources might look like this:

6 1
1 75

RabbitMQ is a message broker that allows producers (those who send a data message) and consumers (those who receive a data message) to establish asynchronous, real-time, and high-performance massive data flows. RabbitMQ supports AMQP (Advanced Message Queuing Protocol), an open standard application layer protocol.
The main reasons to employ RabbitMQ include the following:

  • You can improve the performance of the applications using an asynchronous approach.
  • It lets you decouple and reduce dependencies between services, microservices, and applications with the help of a data message mediator, meaning that there is no need for producers and consumers of exchanged data to know each other.
  • It allows the long-running processing of sent data (with the results) to be delivered after utilizing a response queue.
  • It helps you migrate from monolithic to microservices, where microservices exchange data via Rabbit in a decoupled and asynchronous way.
  • It offers reliability and resilience by making it possible for messages to be stored and forwarded. A message can be delivered multiple times until it is processed.
  • Message queueing is the key to scaling your application. As the workload increases, you will only have to add more workers to handle the queues faster.
  • It works well with data streaming applications.
  • It is beneficial for IoT applications.
  • It is a must for Bots’ communication.

4 0
2 39
Article
· May 2 3m read
Minify XML in IRIS

In a project I'm working on we need to store some arbitrary XML in the database. This XML does not have any corresponding class in IRIS, we just need to store it as a string (it's relatively small and can fit in a string).
Since there are MANY (millions!) of records in the database I decided to reduce as much as possible the size without compressing. I know that some XML to be stored is indented, some not, it varies.

3 3
1 55

One of the challenges of creating a DICOM message is how to implement putting data in the correct place. Part of it is by inserting the data in the specific DICOM tags, while the other is to insert binary data such as a picture - In this article I will explain both.

To create a DICOM message, you can either use the EnsLib.DICOM.File class (to create a DICOM file) or the EnsLib.DICOM.Document class (to create a message that can be sent to PACS directly). In either case, the SetValueAt method will allow you to add your data to the DICOM tags.

6 0
0 84
InterSystems Official
· Mar 27 4m read
2025.1 Modernizing Interoperability User Experience

The Interoperability user interface now includes modernized user experiences for the DTL Editor and Production Configuration applications that are available for opt-in in all interoperability products. You can switch between the modernized and standard views. All other Interoperability screens remain in the Standard user interface. Please note that changes are limited to these two applications and we identify below the functionality that is currently available.

21 16
3 380

Hi developers!

This will be a very short article as in April 2025 with Lovable and other Prompt-to-UI tools it becomes possible to build the frontend with prompting. Even to the folks like me who is not familiar with modern UI techics at all.

Well, I know at least the words javascript, typescript and ReactJS, so in this very short article we will be building the ReactJS UI to InterSystems FHIR server with Lovable.ai.

Let's go!

4 2
1 68

Prefer not to read? Check out the demo video I created:

https://www.youtube.com/embed/-OwOAHC5b3s
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

2 3
1 132

When using standard SQL or the object layer in InterSystems IRIS, metadata consistency is usually maintained through built-in validation and type enforcement. However, legacy systems that bypass these layers—directly accessing globals—can introduce subtle and serious inconsistencies.

1 0
0 33

Who hasn't been developing a beautiful example using a Docker IRIS image and had the image generation process fail in the Dockerfile because the license under which the image was created doesn't contain certain privileges?

In my case, what I was deploying in Docker is a small application that uses the Vector data type. With the Community version, this isn't a problem because it already includes Vector Search and vector storage. However, when I changed the IRIS image to a conventional IRIS (the latest-cd), I found that when I built the image, including the classes it had generated, it returned this error:

9 2
1 77

I know that people who are completely new to VS Code, Git, Docker, FHIR, and other tools can sometimes struggle with setting up the environment. So I decided to write an article that walks through the entire setup process step by step to make it easier to get started.

I’d really appreciate it if you could leave a comment at the end - let me know if the instructions were clear, if anything was missing, or if there’s anything else you'd find helpful.

The setup includes:

✅ VS Code – Code editor
✅ Git – Version control system
✅ Docker – Runs an instance of IRIS for Health Community
✅ VS Code REST Client Extension – For running FHIR API queries
✅ Python – For writing FHIR-based scripts
✅ Jupyter Notebooks – For AI and FHIR assignments

Before you begin: Ensure you have administrator privileges on your system.

In addition to reading the guide, you can also follow the steps in the videos:

For Windows

https://www.youtube.com/embed/IyvuHbxCwCY
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

6 2
2 154
Article
· Jul 8, 2020 7m read
Tips for debugging with %Status

Introduction

If you're solving complex problems in ObjectScript, you probably have a lot of code that works with %Status values. If you have interacted with persistent classes from an object perspective (%Save, %OpenId, etc.), you have almost certainly seen them. A %Status provides a wrapper around a localizable error message in InterSystems' platforms. An OK status ($$$OK) is just equal to 1, whereas a bad status ($$$ERROR(errorcode,arguments...)) is represented as a 0 followed by a space followed by a $ListBuild list with structured information about the error. $System.Status (see class reference) provides several handy APIs for working with %Status values; the class reference is helpful and I won't bother duplicating it here. There have been a few other useful articles/questions on the topic as well (see links at the end). My focus in this article will be on a few debugging tricks techniques rather than coding best practices (again, if you're looking for those, see links at the end).

15 8
11 2.3K

Migrating InterSystems IRIS and InterSystems IRIS for Health from on-premises to the cloud offers many advantages for Application Providers and Solution Providers. These advantages include simplified operations, access to flexible resources, and enhanced resilience. Companies no longer need to worry about the physical constraints and expenses associated with maintaining on-prem infrastructure, such as power and space requirements and expensive computer hardware.

One of the most compelling benefits is the ability to accelerate speed to market. By removing the burden of infrastructure maintenance, cloud environments enable faster development and deployment cycles, allowing businesses to respond quickly to market demands and opportunities. Operational costs are also lowered, because companies can scale resources up or down based on actual needs, leading to more efficient use of capital. Moreover, migrating to the cloud can contribute to a reduced carbon footprint by optimizing energy usage through shared cloud infrastructure.

Transitioning to the cloud may involve significant changes. Companies may benefit from a more operational focus, managing and optimizing cloud resources continuously. This shift may require changes to business models, reconsideration of margins, and strategies for scaling operations up or out. While requiring more investment, embracing these changes can lead to improved agility and competitive advantage in the marketplace.

5 0
2 151

Hi Community,

Traditional keyword-based search struggles with nuanced, domain-specific queries. Vector search, however, leverages semantic understanding, enabling AI agents to retrieve and generate responses based on context—not just keywords.

This article provides a step-by-step guide to creating an Agentic AI RAG (Retrieval-Augmented Generation) application.

Implementation Steps:

  1. Create Agent Tools
    • Add Ingest functionality: Automatically ingests and index documents (e.g., InterSystems IRIS 2025.1 Release Notes).
    • Implement Vector Search Functionality
  2. Create Vector Search Agent
  3. Handoff to Triage (Main Agent)
  4. Run The Agent
3 0
0 92

The "Ask Developer Community AI" tool is an excellent resource for studying for the certification. I asked it about each topic that will be covered in the test and the results are below.
Note: I classified each answer by the assertiveness that I consider as good, average and bad.

Note 2: The article has 4 parts, each one for an exam area.

4 0
1 95

The "Ask Developer Community AI" tool is an excellent resource for studying for the certification. I asked it about each topic that will be covered in the test and the results are below.
Note: I classified each answer by the assertiveness that I consider as good, average and bad.

Note 2: The article has 4 parts, each one for an exam area.

3 0
0 62

The "Ask Developer Community AI" tool is an excellent resource for studying for the certification. I asked it about each topic that will be covered in the test and the results are below.
Note: I classified each answer by the assertiveness that I consider as good, average and bad.

Note 2: The article has 4 parts, each one for an exam area.

3 0
0 59

The "Ask Developer Community AI" tool is an excellent resource for studying for the certification. I asked it about each topic that will be covered in the test and the results are below.
Note: I classified each answer by the assertiveness that I consider as good, average and bad.

Note 2: The article has 4 parts, each one for an exam area.

7 0
3 200

Background:

This guideline provides an overview of how to design and implement a REST API interface for querying patient demographic data from an Electronic Patient Record (EPR) system using HealthConnect. The process involves sending a query request with the patient's identification number, retrieving the response from the EPR system, extracting the required patient demographic data from the HL7 message, and sending it as a JSON response to the supplier. The high-level process diagram is shown below (Screenshot 1).

4 5
1 117

Hi Community,

In this article, I will introduce my application iris-AgenticAI .

The rise of agentic AI marks a transformative leap in how artificial intelligence interacts with the world—moving beyond static responses to dynamic, goal-driven problem-solving. Powered by OpenAI’s Agentic SDK , The OpenAI Agents SDK enables you to build agentic AI apps in a lightweight, easy-to-use package with very few abstractions. It's a production-ready upgrade of our previous experimentation for agents, Swarm.
This application showcases the next generation of autonomous AI systems capable of reasoning, collaborating, and executing complex tasks with human-like adaptability.

Application Features

  • Agent Loop 🔄 A built-in loop that autonomously manages tool execution, sends results back to the LLM, and iterates until task completion.
  • Python-First 🐍 Leverage native Python syntax (decorators, generators, etc.) to orchestrate and chain agents without external DSLs.
  • Handoffs 🤝 Seamlessly coordinate multi-agent workflows by delegating tasks between specialized agents.
  • Function Tools ⚒️ Decorate any Python function with @tool to instantly integrate it into the agent’s toolkit.
  • Vector Search (RAG) 🧠 Native integration of vector store (IRIS) for RAG retrieval.
  • Tracing 🔍 Built-in tracing to visualize, debug, and monitor agent workflows in real time (think LangSmith alternatives).
  • MCP Servers 🌐 Support for Model Context Protocol (MCP) via stdio and HTTP, enabling cross-process agent communication.
  • Chainlit UI 🖥️ Integrated Chainlit framework for building interactive chat interfaces with minimal code.
  • Stateful Memory 🧠 Preserve chat history, context, and agent state across sessions for continuity and long-running tasks.

3 0
0 56
Article
· Apr 1 1m read
IRIS-Intelligent Butler

# IRIS-Intelligent Butler
IRIS Intelligent Butler is an AI intelligent butler system built on the InterSystems IRIS data platform, aimed at providing users with comprehensive intelligent life and work assistance through data intelligence, automated decision-making, and natural interaction.
## Application scenarios
adding services, initializing configurations, etc. are currently being enriched
## Intelligent Butler

3 1
1 59

I just realized I never finished this serie of articles!

GIF de Shame On You Meme | Tenor

In today's article, we'll take a look at the production process that extracts the ICD-10 diagnoses most similar to our text, so we can select the most appropriate option from our frontend.

Looking for diagnostic similarities:

From the screen that shows the diagnostic requests received in HL7 in our application, we can search for the ICD-10 diagnoses closest to the text entered by the professional.

4 0
0 39