Fun or No Fun - how serious is it?


Large language models are stirring up some phenomena in recent months. So inevitably I was playing ChatGPT too over last weekend, to probe whether it would be a complimentary to some BERT based "traditional" AI chatbots I was knocking up, or rather would it simply sweep them away.

9 3
1 1K

In our latest episode of Data Points, I had a conversation with @Thomas Dyar about AI Link, which helps bridge the gap between data scientists and business analysts. Our conversation talks about how AI Link fits with IntegratedML and Adaptive Analytics, as well, as what new features are on the horizon for IntegratedML. Take a listen!

https://5e18edf067eb59-03854285.castos.com/player/1346398
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

3 0
0 173

Hello everyone, this is with great pleasure that I announce the V2 of my application 'Contest-FHIR'.

In this new version, I used new tools and techniques I discovered at the EUROPEAN HEALTHCARE HACKATHON in which I was invited by InterSystems as a guest and as a mentor to display the multiple projects I did in my intership back in April 2022.

Today I present to you the V2 of my application, it can now transform CSV to FHIR to SQL to JUPYTER notebook.

4 0
0 515
Discussion
· Sep 16, 2022
txt2img
Several models, such as DALL-E, Midjourney, and StableDiffusion, became available recently. All these models generate digital images from natural language descriptions. The most interesting one, in my opinion, is StableDiffusion which is open source - released barely a few weeks ago. There's now an entire community trying to leverage it for various use cases.
2 0
0 913

In this article, I am trying to identify the multiple areas to develop the features we can able to do using python and machine learning.

Each hospital is every moment trying to improve its quality of service and efficiency using technology and services.

The healthcare sector is one of the very big and vast areas of service options available and python is one of the best technology for doing machine learning.

In every hospital, humans will come with some feelings, if this feeling will understand using technology is make a chance to provide better service.

2 2
2 394

Hey Community,

Don't miss the latest videos on InterSystems Developers YouTube channel:

IntegratedML Update from the Field

https://www.youtube.com/embed/2-i2Z7aukSc
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

1 3
0 262

Maternal Risk can be measured from some parameters well known to the medical community. In this way, in order to help the medical community and computerized systems, especially AI, the scientist Yasir Hussein Shakir published a very useful dataset for training ML algorithms in the detection/prediction of Maternal Risk.

4 0
1 265

Kidney Disease can be discovered from some parameters well known to the medical community. In this way, in order to help the medical community and computerized systems, especially AI, the scientist Akshay Singh published a very useful dataset for training ML algorithms in the detection/prediction of kidney disease. This publication can be found on the largest and best known data repository for ML, Kaggle at https://www.kaggle.com/datasets/akshayksingh/kidney-disease-dataset.

2 0
0 370

Diabetes can be discovered from some parameters well known to the medical community. In this way, in order to help the medical community and computerized systems, especially AI, the National Institute of Diabetes and Digestive and Kidney Diseases published a very useful dataset for training ML algorithms in the detection/prediction of diabetes. This publication can be found on the largest and best known data repository for ML, Kaggle at https://www.kaggle.com/datasets/mathchi/diabetes-data-set.

6 1
1 385

Hi Community,

Don't miss the new video on InterSystems Developers YouTube:

Exploring Machine Learning with R Language Gateway

https://www.youtube.com/embed/GcN2wD-3FnA
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

2 0
0 278

Hey Community,

Enjoy watching the new video on InterSystems Developers YouTube channel:

Creating Virtual Models with InterSystems IRIS Adaptive Analytics

https://www.youtube.com/embed/E9jBHljk9To
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

1 0
0 220

Hi Community,

Please welcome the new video from #VSummit20:

Showcasing Health Insight & IntegratedML for Healthcare Applications

https://www.youtube.com/embed/q8lC2a6eFgY
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

1 0
0 276

Hi Community,

We're pleased to invite you to the online meetup with the winners of the InterSystems AI contest!

Date & Time: Friday, July 30, 2021 – 11:00 AM EDT

What awaits you at this Virtual Meetup?

  • Our winners' bios.
  • Short demos on their applications.
  • An open discussion about technologies being used. Q&A. Plans for the next contests.

https://www.youtube.com/embed/27vE9o9U3nM
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

4 2
0 320

Challenges of real-time AI/ML computations

We will start from the examples that we faced as Data Science practice at InterSystems:

  • A “high-load” customer portal is integrated with an online recommendation system. The plan is to reconfigure promo campaigns at the level of the entire retail network (we will assume that instead of a “flat” promo campaign master there will be used a “segment-tactic” matrix). What will happen to the recommender mechanisms? What will happen to data feeds and updates into the recommender mechanisms (the volume of input data having increased 25000 times)? What will happen to recommendation rule generation setup (the need to reduce 1000 times the recommendation rule filtering threshold due to a thousandfold increase of the volume and “assortment” of the rules generated)?
  • An equipment health monitoring system uses “manual” data sample feeds. Now it is connected to a SCADA system that transmits thousands of process parameter readings each second. What will happen to the monitoring system (will it be able to handle equipment health monitoring on a second-by-second basis)? What will happen once the input data receives a new bloc of several hundreds of columns with data sensor readings recently implemented in the SCADA system (will it be necessary, and for how long, to shut down the monitoring system to integrate the new sensor data in the analysis)?
  • A complex of AI/ML mechanisms (recommendation, monitoring, forecasting) depend on each other’s results. How many man-hours will it take every month to adapt those AI/ML mechanisms’ functioning to changes in the input data? What is the overall “delay” in supporting business decision making by the AI/ML mechanisms (the refresh frequency of supporting information against the feed frequency of new input data)?

4 0
1 700

Fixing the terminology

A robot is not expected to be either huge or humanoid, or even material (in disagreement with Wikipedia, although the latter softens the initial definition in one paragraph and admits virtual form of a robot). A robot is an automate, from an algorithmic viewpoint, an automate for autonomous (algorithmic) execution of concrete tasks. A light detector that triggers street lights at night is a robot. An email software separating e-mails into “external” and “internal” is also a robot. Artificial intelligence (in an applied and narrow sense, Wikipedia interpreting it differently again) is algorithms for extracting dependencies from data. It will not execute any tasks on its own, for that one would need to implement it as concrete analytic processes (input data, plus models, plus output data, plus process control). The analytic process acting as an “artificial intelligence carrier” can be launched by a human or by a robot. It can be stopped by either of the two as well. And managed by any of them too.

6 0
0 354

Hi Community,

Please welcome the new video on InterSystems Developers YouTube:

Best Practices for In-Platform AI

https://www.youtube.com/embed/K2xm6LIVA6U
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

1 0
0 160