Keywords: IRIS, IntegratedML, Machine Learning, Covid-19, Kaggle

Purpose

Recently I noticed a Kaggle dataset for the prediction of whether a Covid-19 patient will be admitted to ICU. It is a spreadsheet of 1925 encounter records of 231 columns of vital signs and observations, with the last column of "ICU" being 1 for Yes or 0 for No. The task is to predict whether a patient will be admitted to ICU based on known data.

2 1
1 611

Preview releases are now available for InterSystems IRIS Advanced Analytics, and InterSystems IRIS for Health Advanced Analytics! The Advanced Analytics add-on for InterSystems IRIS introduces IntegratedML as a key new feature.

9 1
3 525

Hi Community,

We're pleased to invite all the developers to the upcoming InterSystems AI Contest Kick-Off Webinar! The topic of this webinar is dedicated to the InterSystems AI programming contest.

During the webinar, we will demo how to load data into IRIS, how to deal with it using ODBC/JDBC and REST, and how to use special AI/ML features of IRIS: IntegratedML, DataRobot, R Gateway, Embedded Python, PMML.

Date & Time: Monday, June 28 — 11:00 AM EDT

Speakers:
🗣 @Aleksandar Kovacevic, InterSystems Sales Engineer
🗣 @Théophile.Thierry, InterSystems Intern
🗣 @Bob Kuszewski, Product Manager - Developer Experience, InterSystems
🗣 @Evgeny Shvarov, InterSystems Developer Ecosystem Manager

4 1
0 258
Article
Eduard Lebedyuk · Apr 8, 2019 4m read
Should we use computers?

The titular question was quite relevant and often discussed some thirty years ago. The thought went: “Sure, there are industries where computers are the norm, but in my industry we got just fine so far, the benefits are questionable, problems innumerable and unsolved. Can we continue as before or should we embrace this new technology?”

Today, everyone asks the same question but about Machine Learning and Artificial Intelligence. The doubts are the same – lack of expertise, lack of known path, perceived irrelevancy to the industry.

Yet, as before, the correct, even the only possible answer is a resounding yes. Read on to find out why.

2 1
1 286

Challenges of real-time AI/ML computations

We will start from the examples that we faced as Data Science practice at InterSystems:

  • A “high-load” customer portal is integrated with an online recommendation system. The plan is to reconfigure promo campaigns at the level of the entire retail network (we will assume that instead of a “flat” promo campaign master there will be used a “segment-tactic” matrix). What will happen to the recommender mechanisms? What will happen to data feeds and updates into the recommender mechanisms (the volume of input data having increased 25000 times)? What will happen to recommendation rule generation setup (the need to reduce 1000 times the recommendation rule filtering threshold due to a thousandfold increase of the volume and “assortment” of the rules generated)?
  • An equipment health monitoring system uses “manual” data sample feeds. Now it is connected to a SCADA system that transmits thousands of process parameter readings each second. What will happen to the monitoring system (will it be able to handle equipment health monitoring on a second-by-second basis)? What will happen once the input data receives a new bloc of several hundreds of columns with data sensor readings recently implemented in the SCADA system (will it be necessary, and for how long, to shut down the monitoring system to integrate the new sensor data in the analysis)?
  • A complex of AI/ML mechanisms (recommendation, monitoring, forecasting) depend on each other’s results. How many man-hours will it take every month to adapt those AI/ML mechanisms’ functioning to changes in the input data? What is the overall “delay” in supporting business decision making by the AI/ML mechanisms (the refresh frequency of supporting information against the feed frequency of new input data)?

4 0
1 462

Hi,

While we're working on a new data product supporting the analytics development process, we'd like to test some of the UX (User eXperience) design elements on a real audience. If you've got some battle scars from earlier analytics work and are interested in participating, please complete this survey and we'll get in touch when we have something to show!

Feel free to share this survey with your data-savvy friends and colleagues if you think they match the profile.

Thanks in advance for your participation!

4 0
0 211

Keywords: IRIS, IntegratedML, Machine Learning, Covid-19, Kaggle

Continued from the previous Part I ... In part I, we walked through traditional ML approaches on this Covid-19 dataset on Kaggle.

In this Part II, let's run the same data & task, in its simplest possible form, through IRIS integratedML which is a nice & sleek SQL interface for backend AutoML options. It uses the same environment.

0 0
0 428

Artificial intelligence has solved countless human challenges – and medical coding might be next.
As organizations prepare for ICD-11, medical coding is about to become more complicated. Healthcare organizations in the United States already manage 140,000+ codes in ICD-10. With ICD-11, that number will rise.
Some propose artificial intelligence as a solution. AI could aid computer-based medical coding systems, identifying errors, enhancing patient care, and optimizing revenue cycles, among other benefits.

1 0
0 293