Indexing

About this tag

How to index data structures in databases

Subscribe to Indexing content with RSS Syndicate content or email

In the previous parts (1, 2) we talked about globals as trees. In this article, we will look at them as sparse arrays.

A sparse array - is a type of array where most values assume an identical value.

In practice, you will often see sparse arrays so huge that there is no point in occupying memory with identical elements. Therefore, it makes sense to organize sparse arrays in such a way that memory is not wasted on storing duplicate values.

In some programming languages, sparse arrays are part of the language - for example, in J, MATLAB. In other languages, there are special libraries that let you use them. For C++, those would be Eigen and the like.

Globals are good candidates for implementing sparse arrays for the following reasons:

Last comment 17 July 2017
5
2

comments

350

views

+ 6

rating

Hi 

I have two persistent classes defined. Lets call it Parent and Child.

Child class is one of the property of Parent Class.

I would like to define a index on Child class.

Last answer 16 July 2017
1
1

answers

0

comments

147

views

0

rating

Quotes (1NF/2NF/3NF)ru:

Every row-and-column intersection contains exactly one value from the applicable domain (and nothing else).
The same value can be atomic or non-atomic depending on the purpose of this value. For example, “4286” can be
  • atomic, if its denotes “a credit card’s PIN code” (if it’s broken down or reshuffled, it is of no use any longer)
  • non-atomic, if it’s just a “sequence of numbers” (the value still makes sense if broken down into several parts or reshuffled)

This article explores the standard methods of increasing the performance of SQL queries involving the following types of fields: string, date, simple list (in the $LB format), "list of <...>" and "array of <...>".

3
0

comments

226

views

+ 6

rating

Overview

Encryption of sensitive data becomes more and more important for applications. For example patient names, SSN, address-data or credit card-numbers etc..

Cache supports different flavors of encryption. Block-level database encryption and data-element encryption. The block-level database encryption protects an entire database.  The decryption/encryption is done when a block is written/read to or from the database and has very little impact on the performance.

With data-element encryption only certain data-fields are encrypted.  Fields that contain sensitive data like patient data or credit-card numbers. Data-element encryption is also useful if a re-encryption is required periodically. With data-element encryption it is the responsibility of the application to encrypt/decrypt the data.

Both encryption methods leverage the managed key encryption infrastructure of Caché.

The following article describes a sample use-case where data-element encryption is used to encrypt person data.  

But what if you have hundreds of thousands of records with an encrypted datafield and you have the need to search that field? Decryption of the field-values prior to the search is not an option. What about indices?

This article describes a possible solution and develops step-by-step a small example how you can use SQL and indices to search encrypted fields. 

Last comment 16 March 2017
1
9

comments

410

views

+ 4

rating

Earlier in this series, we've presented four different demo applications for iKnow, illustrating how its unique bottom-up approach allows users to explore the concepts and context of their unstructured data and then leverage these insights to implement real-world use cases. We started small and simple with core exploration through the Knowledge Portal, then organized our records according to content with the Set Analysis Demoorganized our domain knowledge using the Dictionary Builder Demo and finally build complex rules to extract nontrivial patterns from text with the Rules Builder Demo.

This time, we'll dive into a different area of the iKnow feature set: iFind. Where iKnow's core APIs are all about exploration and leveraging those results programmatically in applications and analytics, iFind is focused specifically on search scenarios in a pure SQL context. We'll be presenting a simple search portal implemented in Zen that showcases iFind's main features.

Last comment 28 June 2016
6
1

comments

416

views

+ 7

rating

The object and relational data models of the Caché database support three types of indexes, which are standard, bitmap, and bitslice. In addition to these three native types, developers can declare their own custom types of indexes and use them in any classes since version 2013.1. For example, iFind text indexes use that mechanism.

Last comment 29 January 2016
6
1

comments

855

views

+ 9

rating