Article
· Jun 18 2m read
Options for Python Devs + Poll!

I am writing this post primarily to gather an informal consensus on how developers are using Python in conjunction with IRIS, so please respond to the poll at the end of this article! In the body of the article, I'll give some background on each choice provided, as well as the advantages for each, but feel free to skim over it and just respond to the poll.

4 5
2 125

If you're migrating from Oracle to InterSystems IRIS—like many of my customers—you may run into Oracle-specific SQL patterns that need translation.

Take this example:

SELECT (TO_DATE('2023-05-12','YYYY-MM-DD') - LEVEL + 1) AS gap_date
FROM dual
CONNECT BY LEVEL <= (TO_DATE('2023-05-12','YYYY-MM-DD') - TO_DATE('2023-05-02','YYYY-MM-DD') + 1);

In Oracle:

2 1
0 65

For a long time I have wanted to learn the Django framework, but another more pressing project has always taken priority. Like many developers, I use python when it comes to machine learning, but when I first learned web programming PHP was still enjoying primacy, and so when it was time for me to pick up a new complicated framework for creating web applications to publish my machine learning work, I still turned to PHP.

3 2
1 301

This article presents a potential solution for semantic code search in TrakCare using IRIS Vector Search.

Here's a brief overview of results from the TrakCare Semantic code search for the query: "Validation before database object save".

  • Code Embedding model

There are numerous embedding models designed for sentences and paragraphs, but they are not ideal for code specific embeddings.

3 0
0 125

Introducing Smart Clinical Sidechick — the intelligent, no-drama partner your EHR wishes it could be. She reads FHIR data in real time, interprets lab results without ghosting, and explains clinical alerts like she actually cares. Built with GPT-4 brains and YAML sass, she’s not here to replace your main EHR—just to make it look bad. Tired of irrelevant alerts and cryptic warnings? Sidechick serves up real, explainable insights, not vague “elevated risk” vibes. And when your backend crashes, she doesn’t panic—she self-heals.

1 0
1 79

If you are a customer of the new InterSystems IRIS® Cloud SQL and InterSystems IRIS® Cloud IntegratedML® cloud offerings and want access to the metrics of your deployments and send them to your own Observability platform, here is a quick and dirty way to get it done by sending the metrics to Google Cloud Platform Monitoring (formerly StackDriver).

11 1
2 301

I know that people who are completely new to VS Code, Git, Docker, FHIR, and other tools can sometimes struggle with setting up the environment. So I decided to write an article that walks through the entire setup process step by step to make it easier to get started.

I’d really appreciate it if you could leave a comment at the end - let me know if the instructions were clear, if anything was missing, or if there’s anything else you'd find helpful.

The setup includes:

✅ VS Code – Code editor
✅ Git – Version control system
✅ Docker – Runs an instance of IRIS for Health Community
✅ VS Code REST Client Extension – For running FHIR API queries
✅ Python – For writing FHIR-based scripts
✅ Jupyter Notebooks – For AI and FHIR assignments

Before you begin: Ensure you have administrator privileges on your system.

In addition to reading the guide, you can also follow the steps in the videos:

For Windows

https://www.youtube.com/embed/IyvuHbxCwCY
[This is an embedded link, but you cannot view embedded content directly on the site because you have declined the cookies necessary to access it. To view embedded content, you would need to accept all cookies in your Cookies Settings]

6 2
2 221

Hi Community,

In this article, I will introduce my application iris-AgenticAI .

The rise of agentic AI marks a transformative leap in how artificial intelligence interacts with the world—moving beyond static responses to dynamic, goal-driven problem-solving. Powered by OpenAI’s Agentic SDK , The OpenAI Agents SDK enables you to build agentic AI apps in a lightweight, easy-to-use package with very few abstractions. It's a production-ready upgrade of our previous experimentation for agents, Swarm.
This application showcases the next generation of autonomous AI systems capable of reasoning, collaborating, and executing complex tasks with human-like adaptability.

Application Features

  • Agent Loop 🔄 A built-in loop that autonomously manages tool execution, sends results back to the LLM, and iterates until task completion.
  • Python-First 🐍 Leverage native Python syntax (decorators, generators, etc.) to orchestrate and chain agents without external DSLs.
  • Handoffs 🤝 Seamlessly coordinate multi-agent workflows by delegating tasks between specialized agents.
  • Function Tools ⚒️ Decorate any Python function with @tool to instantly integrate it into the agent’s toolkit.
  • Vector Search (RAG) 🧠 Native integration of vector store (IRIS) for RAG retrieval.
  • Tracing 🔍 Built-in tracing to visualize, debug, and monitor agent workflows in real time (think LangSmith alternatives).
  • MCP Servers 🌐 Support for Model Context Protocol (MCP) via stdio and HTTP, enabling cross-process agent communication.
  • Chainlit UI 🖥️ Integrated Chainlit framework for building interactive chat interfaces with minimal code.
  • Stateful Memory 🧠 Preserve chat history, context, and agent state across sessions for continuity and long-running tasks.

3 0
0 99

Introduction

In InterSystems IRIS 2024.3 and subsequent IRIS versions, the AutoML component is now delivered as a separate Python package that is installed after installation. Unfortunately, some recent versions of Python packages that AutoML relies on have introduced incompatibilities, and can cause failures when training models (TRAIN MODEL statement). If you see an error mentioning "TypeError" and the keyword argument "fit_params" or "sklearn_tags", read on for a quick fix.

8 0
0 152

After so many years of waiting, we finally got an official driver available on Pypi

Additionally, found JDBC driver finally available on Maven already for 3 months, and .Net driver on Nuget more than a month.

As an author of so many implementations of IRIS support for various Python libraries, I wanted to check it. Implementation of DB-API means that it should be replaceable and at least functions defined in the standard. The only difference should be in SQL.

And the beauty of using already existing libraries, that they already implemented other databases by using DB-API standard, and these libraries already expect how driver should work.

I decided to test InterSystems official driver by implementing its support in SQLAlchemy-iris library.

13 7
3 214

Introduction

As the health interoperability landscape expands to include data exchange across on-premise as well as hosted solutions, we are seeing an increased need to integrate with services such as cloud storage. One of the most prolifically used and well supported tools is the NoSQL database DynamoDB (Dynamo), provided by Amazon Web Services (AWS).

9 4
0 368

Using SQL Gateway with Python, Vector Search, and Interoperability in InterSystems Iris

Part 3 – REST and Interoperability

Now that we have finished the configuration of the SQL Gateway and we have been able to access the data from the external database via python, and we have set up our vectorized base, we can perform some queries. For this in this part of the article we will use an application developed with CSP, HTML and Javascript that will access an integration in Iris, which then performs the search for data similarity, sends it to LLM and finally returns the generated SQL. The CSP page calls an API in Iris that receives the data to be used in the query, calling the integration. For more information about REST in the Iris see the documentation available at https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls...

8 1
0 88

I'm proud to announce the new release of iris-pex-embedded-python (v2.3.1) with a new command line interface.

This command line is called iop for Interoperability On Python.

First I would like to present in few words the project the main changes since the version 1.

A breif history of the project

Version 1.0 was a proof of concept to show how the interoperability framework of IRIS can be used with a python first approach while remaining compatible with any existing ObjectScript code.

What does it mean? It means that any python developer can use the IRIS interoperability framework without any knowledge of ObjectScript.

Example :

from grongier.pex import BusinessOperation

class MyBusinessOperation(BusinessOperation):

    def on_message(self, request):
        self.log.info("Received request")

Great, isn't it?

5 11
0 534

Introduction

To achieve optimized AI performance, robust explainability, adaptability, and efficiency in healthcare solutions, InterSystems IRIS serves as the core foundation for a project within the x-rAI multi-agentic framework. This article provides an in-depth look at how InterSystems IRIS empowers the development of a real-time health data analytics platform, enabling advanced analytics and actionable insights. The solution leverages the strengths of InterSystems IRIS, including dynamic SQL, native vector search capabilities, distributed caching (ECP), and FHIR interoperability. This innovative approach directly aligns with the contest themes of "Using Dynamic SQL & Embedded SQL," "GenAI, Vector Search," and "FHIR, EHR," showcasing a practical application of InterSystems IRIS in a critical healthcare context.

4 1
2 104

Hey, community! 👋

We are a team of Stanford students applying technology to make sense of climate action. AI excites us because we know we can quickly analyze huge amounts of text.

As we require more reports on sustainability, such as responsibility reports and financial statements, it can be challenging to cut through the noise of aspirations and get to the real action: what are companies doing

That’s why we built a tool to match companies with climate actions scraped from company sustainability reports.

4 0
1 59

Using embedded Python while building your InterSystems-based solution can add very powerful and deep capabilities to your toolbox.

I'd like to share one sample use-case I encountered - enabling a CDC (Change Data Capture) for a mongoDB Collection - capturing those changes, digesting them through an Interoperability flow, and eventually updating an EMR via a REST API.

8 1
0 351