Let me introduce my new project, which is irissqlcli, REPL (Read-Eval-Print Loop) for InterSystems IRIS SQL

  • Syntax Highlighting
  • Suggestions (tables, functions)
  • 20+ output formats
  • stdin support
  • Output to files

Install it with pip

pip install irissqlcli

Or run with docker

docker run -it caretdev/irissqlcli irissqlcli iris://_SYSTEM:SYS@host.docker.internal:1972/USER

Connect to IRIS

$ irissqlcli iris://_SYSTEM@localhost:1972/USER -W
Password for _SYSTEM:
Server:  InterSystems IRIS Version 2022.3.0.606 xDBC Protocol Version 65
Version: 0.1.0
[SQL]_SYSTEM@localhost:USER> select $ZVERSION
+---------------------------------------------------------------------------------------------------------+
| Expression_1                                                                                            |
+---------------------------------------------------------------------------------------------------------+
| IRIS for UNIX (Ubuntu Server LTS for ARM64 Containers) 2022.3 (Build 606U) Mon Jan 30 2023 09:05:12 EST |
+---------------------------------------------------------------------------------------------------------+
1 row in set
Time: 0.063s
[SQL]_SYSTEM@localhost:USER> help
+----------+-------------------+------------------------------------------------------------+
| Command  | Shortcut          | Description                                                |
+----------+-------------------+------------------------------------------------------------+
| .exit    | \q                | Exit.                                                      |
| .mode    | \T                | Change the table format used to output results.            |
| .once    | \o [-o] filename  | Append next result to an output file (overwrite using -o). |
| .schemas | \ds               | List schemas.                                              |
| .tables  | \dt [schema]      | List tables.                                               |
| \e       | \e                | Edit command with editor (uses $EDITOR).                   |
| help     | \?                | Show this help.                                            |
| nopager  | \n                | Disable pager, print to stdout.                            |
| notee    | notee             | Stop writing results to an output file.                    |
| pager    | \P [command]      | Set PAGER. Print the query results via PAGER.              |
| prompt   | \R                | Change prompt format.                                      |
| quit     | \q                | Quit.                                                      |
| tee      | tee [-o] filename | Append all results to an output file (overwrite using -o). |
+----------+-------------------+------------------------------------------------------------+
Time: 0.012s
[SQL]_SYSTEM@localhost:USER>

10 20
3 758

InterSystems IRIS currently limits classes to 999 properties.

But what to do if you need to store more data per object?

This article would answer this question (with the additional cameo of Community Python Gateway and how you can transfer wide datasets into Python).

The answer is very simple actually - InterSystems IRIS currently limits classes to 999 properties, but not to 999 primitives. The property in InterSystems IRIS can be an object with 999 properties and so on - the limit can be easily disregarded.

5 13
1 690

This is my introduction to a series of posts explaining how to create an end-to-end Machine Learning system.

Starting with one problem

Our IRIS Development Community has several posts without tags or wrong tagged. As the posts keep growing the organization
of each tag and the experience of any community member browsing the subjects tends to decrease.

First solutions in mind

We can think some usual solutions for this scenario, like:

5 11
2 433

This is the third post of a series explaining how to create an end-to-end Machine Learning system.

Training a Machine Learning Model

When you work with machine learning is common to hear this work: training. Do you what training mean in a ML Pipeline?
Training could mean all the development process of a machine learning model OR the specific point in all development process
that uses training data and results in a machine learning model.

4 10
2 307
Article
· Jun 12, 2023 11m read
Examples to work with IRIS from Django

Introducing Django

Django is a web framework designed to develop servers and APIs, and deal with databases in a fast, scalable, and secure way. To assure that, Django provides tools not only to create the skeleton of the code but also to update it without worries. It allows developers to see changes almost live, correct mistakes with the debug tool, and treat security with ease.

To understand how Django works, let’s take a look at the image:

12 9
3 725

Here you'll find a simple program that uses Python in an IRIS environment and another simple program that uses ObjectScript in a Python environment. Also, I'd like to share a few of the troubles I went trough while learning to implement this.

Python in IRIS environment

Let's say, for example, you're in an IRIS environment and you want to solve a problem that you find easy, or more efficient with Python.

You can simply change the environment: create your method as any other, and in the end of it's name and specifications, you add [ Language = python ]:

11 9
5 1.8K

Hi, Community!

This article is an overview of SQLAlchemy, so let's begin!

SQLAlchemy is the Python SQL toolkit that serves as a bridge between your Python code and the relational database system of your choice. Created by Michael Bayer, it is currently available as an open-source library under the MIT License. SQLAlchemy supports a wide range of database systems, including PostgreSQL, MySQL, SQLite, Oracle, and Microsoft SQL Server, making it versatile and adaptable to different project requirements.

The SQLAlchemy SQL Toolkit and Object Relational Mapper from a comprehensive set of tools for working with databases and Python. It has several distinct areas of functionality which you can use individually or in various combinations. The major components are illustrated below, with component dependencies organized into layers:

_images/sqla_arch_small.png

8 8
4 680
Article
· Jun 12, 2023 3m read
LangChain fixed the SQL for me

This article is a simple quick starter (what I did was) with SqlDatabaseChain.

Hope this ignites some interest.

Many thanks to:

sqlalchemy-iris author @Dmitry Maslennikov

Your project made this possible today.

The article script uses openai API so caution not to share table information and records externally, that you didn't intend to.

A local model could be plugged in , instead if needed.

9 7
3 3.3K

It seems like yesterday when we did a small project in Java to test the performance of IRIS, PostgreSQL and MySQL (you can review the article we wrote back in June at the end of this article). If you remember, IRIS was superior to PostgreSQL and clearly superior to MySQL in insertions, with no big difference in queries.

7 6
3 587
   _________ ___ ____  
  |__  /  _ \_ _|  _ \ 
    / /| |_) | || |_) |
   / /_|  __/| ||  __/ 
  /____|_|  |___|_|    

Starting in version 2021.1, InterSystems IRIS began shipping with a python runtime in the engine's kernel. However, there was no way to install packages from within the instance. The main draw of python is its enormous package ecosystem. With that in mind, I introduce my side project zpip, a pip wrapper that is callable from the iris terminal.

6 6
1 658
Article
· Dec 6, 2022 3m read
OCR DEMO

OCR DEMO

This is a demo of the OCR functionality of the pero-ocr library.

It used in the iris application server in python.

Demo

This is an example of input data :

input

This is the result of the OCR :

In this example you have the following information:

10 6
2 496

For the upcoming Python contest, I would like to make a small demo, on how to create a simple REST application using Python, which will use IRIS as a database. Using this tools

  • FastAPI framework, high performance, easy to learn, fast to code, ready for production
  • SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL
  • Alembic is a lightweight database migration tool for usage with the SQLAlchemy Database Toolkit for Python.
  • Uvicorn is an ASGI web server implementation for Python.

5 5
2 419

A customer recently asked if IRIS supported OpenTelemetry as they where seeking to measure the time that IRIS implemented SOAP Services take to complete. The customer already has several other technologies that support OpenTelemetry for process tracing. At this time, InterSystems IRIS (IRIS) do not natively support OpenTelemetry.

12 5
1 477

Apache Spark has rapidly become one of the most exciting technologies for big data analytics and machine learning. Spark is a general data processing engine created for use in clustered computing environments. Its heart is the Resilient Distributed Dataset (RDD) which represents a distributed, fault tolerant, collection of data that can be operated on in parallel across the nodes of a cluster. Spark is implemented using a combination of Java and Scala and so comes as a library that can run on any JVM.

11 5
1 2.7K

I am demonstrating a use case of how we can create an IRIS Interoperability Production for special use in an external language. InterSystems IRIS, within Interoperability has a framework called Production Extension (PEX), using which we can create productions and program them as per their purpose using external languages like Java, Python etc, and also develop custom inbound and outbound adapters to communicate with other applications.

6 5
0 340