Artificial Intelligence (AI) is getting a lot of attention lately because it can change many areas of our lives. Better computer power and more data have helped AI do amazing things, like improving medical tests and making self-driving cars. AI can also help businesses make better decisions and work more efficiently, which is why it's becoming more popular and widely used. How can one integrate the OpenAI API calls into an existing IRIS Interoperability application?

13 6
4 507

Hi developers!

This will be a very short article as in April 2025 with Lovable and other Prompt-to-UI tools it becomes possible to build the frontend with prompting. Even to the folks like me who is not familiar with modern UI techics at all.

Well, I know at least the words javascript, typescript and ReactJS, so in this very short article we will be building the ReactJS UI to InterSystems FHIR server with Lovable.ai.

Let's go!

4 2
1 78

Thirteen years ago, I attained dual undergraduate degrees in electrical engineering and math, then promptly started full-time at InterSystems using neither. One of my most memorable and stomach-churning academic experiences was in Stats II. On an exam, I was solving a moderately difficult confidence interval problem. I was running out of time, so (being an engineer) I wrote out the definite integral on the exam paper, punched it into my graphing calculator, wrote an arrow with “calculator” over it, then wrote the result.

15 9
0 179

Introduction

As AI-driven automation becomes an essential part of modern information systems, integrating AI capabilities into existing platforms should be seamless and efficient. The IRIS Agent project showcases how generative AI can work effortlessly with InterSystems IRIS, leveraging its powerful interoperability framework—without the need to learn Python or build separate AI workflows from scratch.

11 6
1 161

Introduction

To achieve optimized AI performance, robust explainability, adaptability, and efficiency in healthcare solutions, InterSystems IRIS serves as the core foundation for a project within the x-rAI multi-agentic framework. This article provides an in-depth look at how InterSystems IRIS empowers the development of a real-time health data analytics platform, enabling advanced analytics and actionable insights. The solution leverages the strengths of InterSystems IRIS, including dynamic SQL, native vector search capabilities, distributed caching (ECP), and FHIR interoperability. This innovative approach directly aligns with the contest themes of "Using Dynamic SQL & Embedded SQL," "GenAI, Vector Search," and "FHIR, EHR," showcasing a practical application of InterSystems IRIS in a critical healthcare context.

4 1
2 91

Learning LLM Magic

The world of Generative AI has been pretty inescapable for a while, commercial models running on paid Cloud instances are everywhere. With your data stored securely on-prem in IRIS, it might seem daunting to start getting the benefit of experimentation with Large Language Models without having to navigate a minefield of Governance and rapidly evolving API documentation. If only there was a way to bring an LLM to IRIS, preferably in a very small code footprint....

19 0
5 311

We all know that having a set of proper test data before deploying an application to production is crucial for ensuring its reliability and performance. It allows to simulate real-world scenarios and identify potential issues or bugs before they impact end-users. Moreover, testing with representative data sets allows to optimize performance, identify bottlenecks, and fine-tune algorithms or processes as needed. Ultimately, having a comprehensive set of test data helps to deliver a higher quality product, reducing the likelihood of post-production issues and enhancing the overall user experience.

In this article, let's look at how one can use generative AI, namely Gemini by Google, to generate (hopefully) meaningful data for the properties of multiple objects. To do this, I will use the RESTful service to generate data in a JSON format and then use the received data to create objects.

29 4
0 679
Article
· Nov 11, 2024 4m read
IrisGoogleChat with AI

Hi Community,

I want to share with you the lastest app that I have uploaded to the Open Exchange "IrisGoogleChat".

IrisGoogleChat is a utility for InterSystems IRIS that allows seamless message integration with Google Chat using Cache ObjectScript. This application provides a set of tools to configure Google Chat Channels, create messages powered by moods generated with AI and send them to a Google Chat Channel.

4 0
1 111
Article
· Nov 11, 2024 3m read
EduVerse: Accessible Learning Assistant

🌍 Inclusion & Innovation in Education 🌍
Our project reimagines learning for all students, with a focus on accessibility and interactive experiences. Built with the goal of making education engaging and inclusive, the tool is designed to support students of all abilities in learning complex material in an intuitive way.

💡 What It Does
This educational app transforms lesson presentations into interactive study sessions:

1 0
0 104

image

Hi Community,

In this article, I will introduce my application iris-RAG-Gen .

Iris-RAG-Gen is a generative AI Retrieval-Augmented Generation (RAG) application that leverages the functionality of IRIS Vector Search to personalize ChatGPT with the help of the Streamlit web framework, LangChain, and OpenAI. The application uses IRIS as a vector store.

Application Features

  • Ingest Documents (PDF or TXT) into IRIS
  • Chat with the selected Ingested document
  • Delete Ingested Documents
  • OpenAI ChatGPT

5 1
0 281

ChatIRIS Health Coach, a GPT-4 based agent that leverages the Health Belief Model as a psychological framework to craft empathetic replies. This article elaborates on the backend architecture and its components, focusing on how InterSystems IRIS supports the system's functionality.

1 0
1 189

In the previous article, we saw in detail about Connectors, that let user upload their file and get it converted into embeddings and store it to IRIS DB. In this article, we'll explore different retrieval options that IRIS AI Studio offers - Semantic Search, Chat, Recommender and Similarity.

4 0
1 295
Article
· Jan 26, 2024 8m read
PrivateGPT exploring the Documentation

Considering new business interest in applying Generative-AI to local commercially sensitive private data and information, without exposure to public clouds. Like a match needs the energy of striking to ignite, the Tech lead new "activation energy" challenge is to reveal how investing in GPU hardware could support novel competitive capabilities. The capability can reveal the use-cases that provide new value and savings.

Sharpening this axe begins with a functional protocol for running LLMs on a local laptop.

14 3
8 1.5K

ChatIRIS Health Coach, a GPT-4 based agent that leverages the Health Belief Model (Hochbaum, Rosenstock, & Kegels, 1952) as a psychological framework to craft empathetic replies.

3 3
2 346
Article
· May 14, 2024 11m read
Q&A Chatbot with IRIS and langchain

TL;DR

This article introduces using the langchain framework supported by IRIS for implementing a Q&A chatbot, focusing on Retrieval Augmented Generation (RAG). It explores how IRIS Vector Search within langchain-iris facilitates storage, retrieval, and semantic search of data, enabling precise and up-to-date responses to user queries. Through seamless integration and processes like indexing and retrieval/generation, RAG applications powered by IRIS enable the capabilities of GenAI systems for InterSystems developers.

4 3
2 408

The introduction of InterSystems' "Vector Search" marks a paradigm shift in data processing. This cutting-edge technology employs an embedding model to transform unstructured data, such as text, into structured vectors, resulting in significantly enhanced search capabilities. Inspired by this breakthrough, we've developed a specialized search engine tailored to companies.

2 1
1 115

Problem

Do you resonate with this - A capability and impact of a technology being truly discovered when it's packaged in a right way to it's audience. Finest example would be, how the Generative AI took off when ChatGPT was put in the public for easy access and not when Transformers/RAG's capabilities were identified. At least a much higher usage came in, when the audience were empowered to explore the possibilities.

8 6
6 472

In the previous article, we saw different modules in IRIS AI Studio and how it could help explore GenAI capabilities out of IRIS DB seamlessly, even for a non-technical stakeholder. In this article, we will deep dive into "Connectors" module, the one that enables users to seamlessly load data from local or cloud sources (AWS S3, Airtable, Azure Blob) into IRIS DB as vector embeddings, by also configuring embedding settings like model and dimensions.

4 2
2 320