I created this application considering how to convert images such as prescription forms into FHIR messages

It recognizes the text in the image through OCR technology and extracts it, which is then transformed into fhir messages through AI (LLA language model).

Finally, sending the message to the fhir server of IntereSystems can verify whether the message meets the fhir requirements. If approved, it can be viewed on the select page.

7 4
1 208

Problem

In a fast-paced clinical environment, where quick decision-making is crucial, the lack of streamlined document storage and access systems poses several obstacles. While storage solutions for documents exist (e.g, FHIR), accessing and effectively searching for specific patient data within those documents meaningfully can be a significant challenge.

7 0
2 630

On this GitHub you can find all the information on how to use a HuggingFace machine learning / AI model on the IRIS Framework using python.

1. iris-huggingface

Usage of Machine Learning models in IRIS using Python; For text-to-text, text-to-image or image-to-image models.

6 5
1 767

☤ Care 🩺 Compass 🧭 - Proof-of-Concept - Demo Games Contest Entry

Introducing Care Compass: AI-Powered Case Prioritization for Human Services

In today’s healthcare and social services landscape, caseworkers face overwhelming challenges. High caseloads, fragmented systems, and disconnected data often lead to missed opportunities to intervene early and effectively. This results in worker burnout and preventable emergency room visits, which are both costly and avoidable.

Care Compass was created to change that.

6 3
1 44
Article
· Jul 27, 2018 4m read
Load a ML model into InterSystems IRIS

Hi all. Today we are going to upload a ML model into IRIS Manager and test it.

Note: I have done the following on Ubuntu 18.04, Apache Zeppelin 0.8.0, Python 3.6.5.

Introduction

These days many available different tools for Data Mining enable you to develop predictive models and analyze the data you have with unprecedented ease. InterSystems IRIS Data Platform provide a stable foundation for your big data and fast data applications, providing interoperability with modern DataMining tools.

6 2
2 1.4K


Hi Community

In this article, I will introduce my application IRIS-GenLab.

IRIS-GenLab is a generative AI Application that leverages the functionality of Flask web framework, SQLALchemy ORM, and InterSystems IRIS to demonstrate Machine Learning, LLM, NLP, Generative AI API, Google AI LLM, Flan-T5-XXL model, Flask Login and OpenAI ChatGPT use cases.

6 0
1 373

​Keywords: ChatGPT, COS, Lookup Table, IRIS, AI

Purpose


Here is another quick note before we move on to GPT-4 assisted automation journey. Below are some "little" helps ChatGPT had already been offering, here and there, during daily works.

And what could be the perceived gaps, risks and traps to LLMs assisted automation, if you happen to explore this path too. I'd also love to hear anyone's use cases and experiences on this front too.

6 3
2 625

Hi Community!

Just want to share with you an exercise I made to create "my own" chat with GPT in Telegram.

It became possible because of two components on Open Exchange: Telegram Adapter by @Nikolay Solovyev and IRIS Open-AI by @Kurro Lopez

So with this example you can setup your own chat with ChatGPT in Telegram.

Let's see how to make it work!

6 8
1 584

Fixing the terminology

A robot is not expected to be either huge or humanoid, or even material (in disagreement with Wikipedia, although the latter softens the initial definition in one paragraph and admits virtual form of a robot). A robot is an automate, from an algorithmic viewpoint, an automate for autonomous (algorithmic) execution of concrete tasks. A light detector that triggers street lights at night is a robot. An email software separating e-mails into “external” and “internal” is also a robot. Artificial intelligence (in an applied and narrow sense, Wikipedia interpreting it differently again) is algorithms for extracting dependencies from data. It will not execute any tasks on its own, for that one would need to implement it as concrete analytic processes (input data, plus models, plus output data, plus process control). The analytic process acting as an “artificial intelligence carrier” can be launched by a human or by a robot. It can be stopped by either of the two as well. And managed by any of them too.

6 0
0 377

Diabetes can be discovered from some parameters well known to the medical community. In this way, in order to help the medical community and computerized systems, especially AI, the National Institute of Diabetes and Digestive and Kidney Diseases published a very useful dataset for training ML algorithms in the detection/prediction of diabetes. This publication can be found on the largest and best known data repository for ML, Kaggle at https://www.kaggle.com/datasets/mathchi/diabetes-data-set.

6 1
1 416

In the previous article we presented the d[IA]gnosis application developed to support the coding of diagnoses in ICD-10. In this article we will see how InterSystems IRIS for Health provides us with the necessary tools for the generation of vectors from the ICD-10 code list using a pre-trained language model, its storage and the subsequent search for similarities on all these generated vectors.

6 1
1 298

This is my introduction to a series of posts explaining how to create an end-to-end Machine Learning system.

Starting with one problem

Our IRIS Development Community has several posts without tags or wrong tagged. As the posts keep growing the organization
of each tag and the experience of any community member browsing the subjects tends to decrease.

First solutions in mind

We can think some usual solutions for this scenario, like:

5 11
2 532

FHIR has revolutionized the healthcare industry by providing a standardized data model for building healthcare applications and promoting data exchange between different healthcare systems. As the FHIR standard is based on modern API-driven approaches, making it more accessible to mobile and web developers. However, interacting with FHIR APIs can still be challenging especially when it comes to querying data using natural language.

5 4
2 1.3K
Article
· May 14, 2024 11m read
Q&A Chatbot with IRIS and langchain

TL;DR

This article introduces using the langchain framework supported by IRIS for implementing a Q&A chatbot, focusing on Retrieval Augmented Generation (RAG). It explores how IRIS Vector Search within langchain-iris facilitates storage, retrieval, and semantic search of data, enabling precise and up-to-date responses to user queries. Through seamless integration and processes like indexing and retrieval/generation, RAG applications powered by IRIS enable the capabilities of GenAI systems for InterSystems developers.

5 3
3 427

Maternal Risk can be measured from some parameters well known to the medical community. In this way, in order to help the medical community and computerized systems, especially AI, the scientist Yasir Hussein Shakir published a very useful dataset for training ML algorithms in the detection/prediction of Maternal Risk.

4 0
1 290

Hello everyone, this is with great pleasure that I announce the V2 of my application 'Contest-FHIR'.

In this new version, I used new tools and techniques I discovered at the EUROPEAN HEALTHCARE HACKATHON in which I was invited by InterSystems as a guest and as a mentor to display the multiple projects I did in my intership back in April 2022.

Today I present to you the V2 of my application, it can now transform CSV to FHIR to SQL to JUPYTER notebook.

4 0
0 548

This is the third post of a series explaining how to create an end-to-end Machine Learning system.

Training a Machine Learning Model

When you work with machine learning is common to hear this work: training. Do you what training mean in a ML Pipeline?
Training could mean all the development process of a machine learning model OR the specific point in all development process
that uses training data and results in a machine learning model.

4 10
2 368

Keywords: Anaconda, Jupyter Notebook, Tensorflow GPU, Deep Learning, Python 3 and HealthShare

1. Purpose and Objectives

This "Part I" is a quick record on how to set up a "simple" but popular deep learning demo environment step-by-step with a Python 3 binding to a HealthShare 2017.2.1 instance . I used a Win10 laptop at hand, but the approach works the same on MacOS and Linux.

4 0
2 1.2K

In the previous article, we saw different modules in IRIS AI Studio and how it could help explore GenAI capabilities out of IRIS DB seamlessly, even for a non-technical stakeholder. In this article, we will deep dive into "Connectors" module, the one that enables users to seamlessly load data from local or cloud sources (AWS S3, Airtable, Azure Blob) into IRIS DB as vector embeddings, by also configuring embedding settings like model and dimensions.

4 2
2 334