Article
· May 14, 2024 11m read
Q&A Chatbot with IRIS and langchain

TL;DR

This article introduces using the langchain framework supported by IRIS for implementing a Q&A chatbot, focusing on Retrieval Augmented Generation (RAG). It explores how IRIS Vector Search within langchain-iris facilitates storage, retrieval, and semantic search of data, enabling precise and up-to-date responses to user queries. Through seamless integration and processes like indexing and retrieval/generation, RAG applications powered by IRIS enable the capabilities of GenAI systems for InterSystems developers.

5 3
2 409
Article
· Apr 8, 2019 4m read
Should we use computers?

The titular question was quite relevant and often discussed some thirty years ago. The thought went: “Sure, there are industries where computers are the norm, but in my industry we got just fine so far, the benefits are questionable, problems innumerable and unsolved. Can we continue as before or should we embrace this new technology?”

Today, everyone asks the same question but about Machine Learning and Artificial Intelligence. The doubts are the same – lack of expertise, lack of known path, perceived irrelevancy to the industry.

Yet, as before, the correct, even the only possible answer is a resounding yes. Read on to find out why.

2 1
1 395

Kidney Disease can be discovered from some parameters well known to the medical community. In this way, in order to help the medical community and computerized systems, especially AI, the scientist Akshay Singh published a very useful dataset for training ML algorithms in the detection/prediction of kidney disease. This publication can be found on the largest and best known data repository for ML, Kaggle at https://www.kaggle.com/datasets/akshayksingh/kidney-disease-dataset.

2 0
0 394

We have a yummy dataset with recipes written by multiple Reddit users, however most of the information is free text as the title or description of a post. Let's find out how we can very easily load the dataset, extract some features and analyze it using features from OpenAI large language model within Embedded Python and the Langchain framework.

10 3
2 378

Continuing with the series of articles on voice file management, we are going to see how we can convert text into audio and receive the file with the chosen voice.
We will also explore how a service from OpenAI can help us analyze a text and determine the mood expressed in it.
Let's analyze how you can create your own voice file and how it can “read” your feelings.

4 0
2 373

Fixing the terminology

A robot is not expected to be either huge or humanoid, or even material (in disagreement with Wikipedia, although the latter softens the initial definition in one paragraph and admits virtual form of a robot). A robot is an automate, from an algorithmic viewpoint, an automate for autonomous (algorithmic) execution of concrete tasks. A light detector that triggers street lights at night is a robot. An email software separating e-mails into “external” and “internal” is also a robot. Artificial intelligence (in an applied and narrow sense, Wikipedia interpreting it differently again) is algorithms for extracting dependencies from data. It will not execute any tasks on its own, for that one would need to implement it as concrete analytic processes (input data, plus models, plus output data, plus process control). The analytic process acting as an “artificial intelligence carrier” can be launched by a human or by a robot. It can be stopped by either of the two as well. And managed by any of them too.

6 0
0 371


Hi Community

In this article, I will introduce my application IRIS-GenLab.

IRIS-GenLab is a generative AI Application that leverages the functionality of Flask web framework, SQLALchemy ORM, and InterSystems IRIS to demonstrate Machine Learning, LLM, NLP, Generative AI API, Google AI LLM, Flan-T5-XXL model, Flask Login and OpenAI ChatGPT use cases.

6 0
1 366

This is the third post of a series explaining how to create an end-to-end Machine Learning system.

Training a Machine Learning Model

When you work with machine learning is common to hear this work: training. Do you what training mean in a ML Pipeline?
Training could mean all the development process of a machine learning model OR the specific point in all development process
that uses training data and results in a machine learning model.

4 10
2 362

ChatIRIS Health Coach, a GPT-4 based agent that leverages the Health Belief Model (Hochbaum, Rosenstock, & Kegels, 1952) as a psychological framework to craft empathetic replies.

3 3
2 347

Hi folks

I want to tell you how you can make your own assistant based on IRIS and OpenAI (perhaps you can then move to your own AI models)

iris-recorder-helper

This is the first time I have fully tried developing an application for IRIS and I want to point out steps that may also be useful to you

3 5
1 335
Article
· Nov 27, 2023 2m read
Generative AI for image creation

Currently, many digital artists use generative AI technology as a support to accelerate the delivery of their work. Nowadays it is possible to generate a corresponding image from a text sentence. There are several market solutions for this, including some available to be used through APIs. See some at this link: https://www.analyticsvidhya.com/blog/2023/08/ai-image-generators/.

2 5
2 330

In the previous article, we saw different modules in IRIS AI Studio and how it could help explore GenAI capabilities out of IRIS DB seamlessly, even for a non-technical stakeholder. In this article, we will deep dive into "Connectors" module, the one that enables users to seamlessly load data from local or cloud sources (AWS S3, Airtable, Azure Blob) into IRIS DB as vector embeddings, by also configuring embedding settings like model and dimensions.

4 2
2 322

Learning LLM Magic

The world of Generative AI has been pretty inescapable for a while, commercial models running on paid Cloud instances are everywhere. With your data stored securely on-prem in IRIS, it might seem daunting to start getting the benefit of experimentation with Large Language Models without having to navigate a minefield of Governance and rapidly evolving API documentation. If only there was a way to bring an LLM to IRIS, preferably in a very small code footprint....

19 0
5 315

With the introduction of vector data types and the Vector Search functionality in IRIS, a whole world of possibilities opens up for the development of applications and an example of these applications is the one that I recently saw published in a public contest by the Ministry of Health from Valencia in which they requested a tool to assist in ICD-10 coding using AI models.

How could we implement an application similar to the one requested? Let's see what we would need:

11 2
2 314

In the previous article, we saw in detail about Connectors, that let user upload their file and get it converted into embeddings and store it to IRIS DB. In this article, we'll explore different retrieval options that IRIS AI Studio offers - Semantic Search, Chat, Recommender and Similarity.

4 0
1 297

Maternal Risk can be measured from some parameters well known to the medical community. In this way, in order to help the medical community and computerized systems, especially AI, the scientist Yasir Hussein Shakir published a very useful dataset for training ML algorithms in the detection/prediction of Maternal Risk.

4 0
1 283

In the previous article we presented the d[IA]gnosis application developed to support the coding of diagnoses in ICD-10. In this article we will see how InterSystems IRIS for Health provides us with the necessary tools for the generation of vectors from the ICD-10 code list using a pre-trained language model, its storage and the subsequent search for similarities on all these generated vectors.

6 1
1 282

As said in the previous article about the iris-fhir-generative-ai experiment, the project logs all events for analysis. Here we are going to discuss two types of analysis covered by analytics embedded in the project:

2 0
1 256

I created this application considering how to convert images such as prescription forms into FHIR messages

It recognizes the text in the image through OCR technology and extracts it, which is then transformed into fhir messages through AI (LLA language model).

Finally, sending the message to the fhir server of IntereSystems can verify whether the message meets the fhir requirements. If approved, it can be viewed on the select page.

7 4
1 204

ChatIRIS Health Coach, a GPT-4 based agent that leverages the Health Belief Model as a psychological framework to craft empathetic replies. This article elaborates on the backend architecture and its components, focusing on how InterSystems IRIS supports the system's functionality.

1 0
1 190

Hi Community,

Traditional keyword-based search struggles with nuanced, domain-specific queries. Vector search, however, leverages semantic understanding, enabling AI agents to retrieve and generate responses based on context—not just keywords.

This article provides a step-by-step guide to creating an Agentic AI RAG (Retrieval-Augmented Generation) application.

Implementation Steps:

  1. Create Agent Tools
    • Add Ingest functionality: Automatically ingests and index documents (e.g., InterSystems IRIS 2025.1 Release Notes).
    • Implement Vector Search Functionality
  2. Create Vector Search Agent
  3. Handoff to Triage (Main Agent)
  4. Run The Agent
3 0
1 161