Let me introduce my new project, which is irissqlcli, REPL (Read-Eval-Print Loop) for InterSystems IRIS SQL

  • Syntax Highlighting
  • Suggestions (tables, functions)
  • 20+ output formats
  • stdin support
  • Output to files

Install it with pip

pip install irissqlcli

Or run with docker

docker run -it caretdev/irissqlcli irissqlcli iris://_SYSTEM:SYS@host.docker.internal:1972/USER

Connect to IRIS

$ irissqlcli iris://_SYSTEM@localhost:1972/USER -W
Password for _SYSTEM:
Server:  InterSystems IRIS Version 2022.3.0.606 xDBC Protocol Version 65
Version: 0.1.0
[SQL]_SYSTEM@localhost:USER> select $ZVERSION
+---------------------------------------------------------------------------------------------------------+
| Expression_1                                                                                            |
+---------------------------------------------------------------------------------------------------------+
| IRIS for UNIX (Ubuntu Server LTS for ARM64 Containers) 2022.3 (Build 606U) Mon Jan 30 2023 09:05:12 EST |
+---------------------------------------------------------------------------------------------------------+
1 row in set
Time: 0.063s
[SQL]_SYSTEM@localhost:USER> help
+----------+-------------------+------------------------------------------------------------+
| Command  | Shortcut          | Description                                                |
+----------+-------------------+------------------------------------------------------------+
| .exit    | \q                | Exit.                                                      |
| .mode    | \T                | Change the table format used to output results.            |
| .once    | \o [-o] filename  | Append next result to an output file (overwrite using -o). |
| .schemas | \ds               | List schemas.                                              |
| .tables  | \dt [schema]      | List tables.                                               |
| \e       | \e                | Edit command with editor (uses $EDITOR).                   |
| help     | \?                | Show this help.                                            |
| nopager  | \n                | Disable pager, print to stdout.                            |
| notee    | notee             | Stop writing results to an output file.                    |
| pager    | \P [command]      | Set PAGER. Print the query results via PAGER.              |
| prompt   | \R                | Change prompt format.                                      |
| quit     | \q                | Quit.                                                      |
| tee      | tee [-o] filename | Append all results to an output file (overwrite using -o). |
+----------+-------------------+------------------------------------------------------------+
Time: 0.012s
[SQL]_SYSTEM@localhost:USER>

10 20
3 848
InterSystems Official
· Mar 27 4m read
2025.1 Modernizing Interoperability User Experience

The Interoperability user interface now includes modernized user experiences for the DTL Editor and Production Configuration applications that are available for opt-in in all interoperability products. You can switch between the modernized and standard views. All other Interoperability screens remain in the Standard user interface. Please note that changes are limited to these two applications and we identify below the functionality that is currently available.

21 19
3 514

I am aware that we have 5 License Units on Community Edition. But I have issues figuring out how it's working.

I have Community Edition

USER>write $system.License.KeyCustomerName()
InterSystems IRIS Community

Freshly started system, only terminal session open, so, only one license units used, and 4 left. As expected

USER>write $system.License.LUConsumed()
1
USER>write $system.License.LUAvailable()
4

Quote from documentation - $SYSTEM.License.MaxConnections() returns the maximum number of connections a user can make while consuming one license unit.

USER>write $system.License.MaxConnections()
25

2 16
1 667

image

Hi Community

In this article, I will introduce my application irisChatGPT which is built on LangChain Framework.

First of all, let us have a brief overview of the framework.

The entire world is talking about ChatGPT and how Large Language Models(LLMs) have become so powerful and has been performing beyond expectations, giving human-like conversations. This is just the beginning of how this can be applied to every enterprise and every domain!

9 13
7 2.2K

What is Web Scraping:

In simple terms, Web scraping, web harvesting, or web data extraction is an automated process of collecting large data(unstructured) from websites. The user can extract all the data on particular sites or the specific data as per the requirement. The data collected can be stored in a structured format for further analysis.

17 12
9 1.7K

I'm proud to announce the new release of iris-pex-embedded-python (v2.3.1) with a new command line interface.

This command line is called iop for Interoperability On Python.

First I would like to present in few words the project the main changes since the version 1.

A breif history of the project

Version 1.0 was a proof of concept to show how the interoperability framework of IRIS can be used with a python first approach while remaining compatible with any existing ObjectScript code.

What does it mean? It means that any python developer can use the IRIS interoperability framework without any knowledge of ObjectScript.

Example :

from grongier.pex import BusinessOperation

class MyBusinessOperation(BusinessOperation):

    def on_message(self, request):
        self.log.info("Received request")

Great, isn't it?

5 11
0 537
Question
· Jul 28, 2023
IRISPIP Cryptodome C++ Error

Hello,

I need AES ECB with PKSC7 padding for an interface.
Unfortunately, the %SYSTEM.Encryption.AESEncode cannot do this.

Therefore I wanted to include the following python lib.
PyCrptydome -> https://pycryptodome.readthedocs.io/en/latest/index.html

We need to install the package offline on the system. So I downloaded it and put it in the MGR/Python/ directory.

However, when I try to install it, I get the following error message:

0 11
0 307
Article
· Sep 18, 2023 7m read
Vectors support, well almost

Nowadays so much noise around LLM, AI, and so on. Vector databases are kind of a part of it, and already many different realizations for the support in the world outside of IRIS.

Why Vector?

  • Similarity Search: Vectors allow for efficient similarity search, such as finding the most similar items or documents in a dataset. Traditional relational databases are designed for exact match searches, which are not suitable for tasks like image or text similarity search.
  • Flexibility: Vector representations are versatile and can be derived from various data types, such as text (via embeddings like Word2Vec, BERT), images (via deep learning models), and more.
  • Cross-Modal Searches: Vectors enable searching across different data modalities. For instance, given a vector representation of an image, one can search for similar images or related texts in a multimodal database.

And many other reasons.

So, for this pyhon contest, I decided to try to implement this support. And unfortunately I did not manage to finish it in time, below I'll explain why.

10 7
3 1.2K

Introduction

Data analytics is a crucial aspect of business decision-making in today's fast-paced world. Organizations rely heavily on data analysis to make informed decisions and stay ahead of the competition. In this article, we will explore how data analytics can be performed using Pandas and Intersystems Embedded Python. We will discuss the basics of Pandas, the benefits of using Intersystems Embedded Python, and how they can be used together to perform efficient data analytics.

19 7
8 1.5K

cover

In this article, I will show you how one can easily create and read Microsoft Word documents using InterSystems IRIS with the leverage power of embedded Python.

Setup

First things first, let’s install the Python module called python-docx. There are a lot of modules to write MS Word files in Python. However, this one is the easiest one to use.

Just execute the following command on the terminal:

14 7
7 1.1K