In the previous article we presented the d[IA]gnosis application developed to support the coding of diagnoses in ICD-10. In this article we will see how InterSystems IRIS for Health provides us with the necessary tools for the generation of vectors from the ICD-10 code list using a pre-trained language model, its storage and the subsequent search for similarities on all these generated vectors.

3 1
0 101

With the introduction of vector data types and the Vector Search functionality in IRIS, a whole world of possibilities opens up for the development of applications and an example of these applications is the one that I recently saw published in a public contest by the Ministry of Health from Valencia in which they requested a tool to assist in ICD-10 coding using AI models.

How could we implement an application similar to the one requested? Let's see what we would need:

5 1
1 113

Continuing with the series of articles on voice file management, we are going to see how we can convert text into audio and receive the file with the chosen voice.
We will also explore how a service from OpenAI can help us analyze a text and determine the mood expressed in it.
Let's analyze how you can create your own voice file and how it can “read” your feelings.

2 0
2 232

ChatIRIS Health Coach, a GPT-4 based agent that leverages the Health Belief Model as a psychological framework to craft empathetic replies. This article elaborates on the backend architecture and its components, focusing on how InterSystems IRIS supports the system's functionality.

0 0
0 93

In the previous article, we saw in detail about Connectors, that let user upload their file and get it converted into embeddings and store it to IRIS DB. In this article, we'll explore different retrieval options that IRIS AI Studio offers - Semantic Search, Chat, Recommender and Similarity.

1 0
1 113

The introduction of InterSystems' "Vector Search" marks a paradigm shift in data processing. This cutting-edge technology employs an embedding model to transform unstructured data, such as text, into structured vectors, resulting in significantly enhanced search capabilities. Inspired by this breakthrough, we've developed a specialized search engine tailored to companies.

2 1
1 82

In the previous article, we saw different modules in IRIS AI Studio and how it could help explore GenAI capabilities out of IRIS DB seamlessly, even for a non-technical stakeholder. In this article, we will deep dive into "Connectors" module, the one that enables users to seamlessly load data from local or cloud sources (AWS S3, Airtable, Azure Blob) into IRIS DB as vector embeddings, by also configuring embedding settings like model and dimensions.

3 2
2 174

TL;DR

This article introduces using the langchain framework supported by IRIS for implementing a Q&A chatbot, focusing on Retrieval Augmented Generation (RAG). It explores how IRIS Vector Search within langchain-iris facilitates storage, retrieval, and semantic search of data, enabling precise and up-to-date responses to user queries. Through seamless integration and processes like indexing and retrieval/generation, RAG applications powered by IRIS enable the capabilities of GenAI systems for InterSystems developers.

4 3
2 281

Problem

Do you resonate with this - A capability and impact of a technology being truly discovered when it's packaged in a right way to it's audience. Finest example would be, how the Generative AI took off when ChatGPT was put in the public for easy access and not when Transformers/RAG's capabilities were identified. At least a much higher usage came in, when the audience were empowered to explore the possibilities.

7 6
6 283

As you have seen in the latest community publications, InterSystems IRIS has included since version 2024.1 the possibility of including vector data types in its database and based on this type of data vector searches have been implemented. Well, these new features reminded me of the article I published a while ago that was based on facial recognition using Embedded Python.

7 2
2 321

Artificial Intelligence (AI) is getting a lot of attention lately because it can change many areas of our lives. Better computer power and more data have helped AI do amazing things, like improving medical tests and making self-driving cars. AI can also help businesses make better decisions and work more efficiently, which is why it's becoming more popular and widely used. How can one integrate the OpenAI API calls into an existing IRIS Interoperability application?

11 5
3 350

We all know that having a set of proper test data before deploying an application to production is crucial for ensuring its reliability and performance. It allows to simulate real-world scenarios and identify potential issues or bugs before they impact end-users. Moreover, testing with representative data sets allows to optimize performance, identify bottlenecks, and fine-tune algorithms or processes as needed. Ultimately, having a comprehensive set of test data helps to deliver a higher quality product, reducing the likelihood of post-production issues and enhancing the overall user experience.

In this article, let's look at how one can use generative AI, namely Gemini by Google, to generate (hopefully) meaningful data for the properties of multiple objects. To do this, I will use the RESTful service to generate data in a JSON format and then use the received data to create objects.

27 3
0 440

What is Unstructured Data?
Unstructured data refers to information lacking a predefined data model or organization. In contrast to structured data found in databases with clear structures (e.g., tables and fields), unstructured data lacks a fixed schema. This type of data includes text, images, videos, audio files, social media posts, emails, and more.

8 3
0 306

In today's data landscape, businesses encounter a number of different challenges. One of them is to do analytics on top of unified and harmonized data layer available to all the consumers. A layer that can deliver the same answers to the same questions irrelative to the dialect or tool being used.

11 2
1 359

The invention and popularization of Large Language Models (such as OpenAI's GPT-4) has launched a wave of innovative solutions that can leverage large volumes of unstructured data that was impractical or even impossible to process manually until recently.

27 4
5 603

I created this application considering how to convert images such as prescription forms into FHIR messages

It recognizes the text in the image through OCR technology and extracts it, which is then transformed into fhir messages through AI (LLA language model).

Finally, sending the message to the fhir server of IntereSystems can verify whether the message meets the fhir requirements. If approved, it can be viewed on the select page.

7 4
1 151

We have a yummy dataset with recipes written by multiple Reddit users, however most of the information is free text as the title or description of a post. Let's find out how we can very easily load the dataset, extract some features and analyze it using features from OpenAI large language model within Embedded Python and the Langchain framework.

10 3
2 295

With the advent of Embedded Python, a myriad of use cases are now possible from within IRIS directly using Python libraries for more complex operations. One such operation is the use of natural language processing tools such as textual similarity comparison.

14 4
4 442

1. IRIS RAG Demo

IRIS RAG Demo

This demo showcases the powerful synergy between IRIS Vector Search and RAG (Retrieval Augmented Generation), providing a cutting-edge approach to interacting with documents through a conversational interface. Utilizing InterSystems IRIS's newly introduced Vector Search capabilities, this application sets a new standard for retrieving and generating information based on a knowledge base.
The backend, crafted in Python and leveraging the prowess of IRIS and IoP, the LLM model is orca-mini and served by the ollama server.
The frontend is an chatbot written with Streamlit.

16 3
2 776

Artificial intelligence is not limited only to generating images through text with instructions or creating narratives with simple directions.

You can also make variations of a picture or include a special background to an already existing one.

Additionally, you can obtain the transcription of audio regardless of its language and the speed of the speaker.

So, let's analyze how the file management works.

9 2
1 378
Article
· Nov 27, 2023 2m read
Generative AI for image creation

Currently, many digital artists use generative AI technology as a support to accelerate the delivery of their work. Nowadays it is possible to generate a corresponding image from a text sentence. There are several market solutions for this, including some available to be used through APIs. See some at this link: https://www.analyticsvidhya.com/blog/2023/08/ai-image-generators/.

1 5
2 294

Hi folks

I want to tell you how you can make your own assistant based on IRIS and OpenAI (perhaps you can then move to your own AI models)

iris-recorder-helper

This is the first time I have fully tried developing an application for IRIS and I want to point out steps that may also be useful to you

3 5
1 294


Hi Community

In this article, I will introduce my application IRIS-GenLab.

IRIS-GenLab is a generative AI Application that leverages the functionality of Flask web framework, SQLALchemy ORM, and InterSystems IRIS to demonstrate Machine Learning, LLM, NLP, Generative AI API, Google AI LLM, Flan-T5-XXL model, Flask Login and OpenAI ChatGPT use cases.

6 0
1 303

As said in the previous article about the iris-fhir-generative-ai experiment, the project logs all events for analysis. Here we are going to discuss two types of analysis covered by analytics embedded in the project:

2 0
1 206