InterSystems IRIS ML Toolkit adds the power of InterSystems IntegratedML to further extend convergent scenario coverage into the area of automated feature and model type/parameter selection. The previous "manual" pipelines now collaborate within the same analytic process with "auto" pipelines that are based on automation frameworks, such as H2O.

Automated classification modeling in InterSystems IRIS ML Toolkit

40
1 3 339

This repository is a go-public that builds on the already existing InterSystems-internal Convergent Analytics community and InterSystems-private MLToolkit repo (remains active and contains the most recent information for external ML Toolkit users - request memebership by writing us at MLToolkit@intersystems.com). This repo embraces more than ML Toolkit, we would like to host any discussions, publications, projects that add up in what we call convergent analytics approach. Welcome!

20
0 0 182
Article
Eduard Lebedyuk · Jan 16, 2020 2m read
Python Gateway VI: Jupyter Notebook

This series of articles would cover Python Gateway for InterSystems Data Platforms. Execute Python code and more from InterSystems IRIS. This project brings you the power of Python right into your InterSystems IRIS environment:

  • Execute arbitrary Python code
  • Seamlessly transfer data from InterSystems IRIS into Python
  • Build intelligent Interoperability business processes with Python Interoperability Adapter
  • Save, examine, modify and restore Python context from InterSystems IRIS

Other articles

The plan for the series so far (subject to change).

Intro

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

This extension allows you to browse and edit InterSystems IRIS BPL processes as jupyter notebooks.

41
0 0 312

What is Distributed Artificial Intelligence (DAI)?

Attempts to find a “bullet-proof” definition have not produced result: it seems like the term is slightly “ahead of time”. Still, we can analyze semantically the term itself – deriving that distributed artificial intelligence is the same AI (see our effort to suggest an “applied” definition) though partitioned across several computers that are not clustered together (neither data-wise, nor via applications, not by providing access to particular computers in principle). I.e., ideally, distributed artificial intelligence should be arranged in such a way that none of the computers participating in that “distribution” have direct access to data nor applications of another computer: the only alternative becomes transmission of data samples and executable scripts via “transparent” messaging. Any deviations from that ideal should lead to an advent of “partially distributed artificial intelligence” – an example being distributed data with a central application server. Or its inverse. One way or the other, we obtain as a result a set of “federated” models (i.e., either models trained each on their own data sources, or each trained by their own algorithms, or “both at once”).

10
1 0 52