Find

Announcement
· Dec 10, 2025

Celebrating 10 Years of the Developer Community - A Decade of Achievements

Hi Community,

As part of our birthday celebration, we’ve put together a special timeline video showcasing the key milestones, growth, and achievements of the Developer Community and its Ecosystem over the past decade 🎆

Take a look at how far we’ve come, and how much we’ve built together:

All of this was made possible thanks to our members, team of moderators and our admins. Let's celebrate our teams that are making all six of our communities vibrant and friendly places to be. So a huge shout-out to our moderators:

Also, let's not forget the team that's organizing, creating, improving, and doing its best to make this Community such a friendly place for everyone: @Anastasia Dyubaylo, @Irène Mykhailova, @Evgeny Shvarov, @Iryna Mologa, and @Dean Andrews

Let’s keep innovating, sharing, and inspiring each other for the next 10 years and beyond!

10 Comments
Discussion (10)5
Log in or sign up to continue
Article
· Dec 10, 2025 3m read

Celebrando una mente curiosa de la Comunidad de Desarrolladores

Toda comunidad técnica próspera tiene personas cuya curiosidad, perseverancia y generosidad ayudan a dar forma a su conocimiento colectivo. En la Comunidad de Desarrolladores de InterSystems, uno de esos colaboradores es @Scott Roth, que ha sido una presencia inspiradora durante casi una década.

👏 Echemos un vistazo más de cerca al notable recorrido de Scott y a su impacto en el ecosistema de InterSystems.

El recorrido de Scott comenzó en 2015, con los primeros pasos en las tecnologías de InterSystems y, poco después, en 2016, en la propia Comunidad de Desarrolladores. Desde entonces, se han sucedido años de experiencia práctica y aprendizaje continuo, marcados por hitos importantes como la transformación de Ensemble a HealthShare Health Connect. Este cambio no solo aportó mayor escalabilidad y fiabilidad, sino que también abrió un mundo de nuevas capacidades por explorar.

Uno de los capítulos más memorables fue la migración de eGate a Ensemble, un proyecto que impulsó un profundo crecimiento técnico. Desde crear interfaces con Caché ObjectScript, hasta elaborar llamadas a procedimientos almacenados con EnsLib.SQL.OutboundAdapter; desde dominar ZAUTHENTICATE para la autenticación LDAP, hasta crear un entorno seguro usando Apache Web Server, certificados y autenticación LDAP basada en modelos. Cada paso alimentó una curiosidad en constante crecimiento y mejoró la eficiencia de todo el entorno. Fue durante aquella migración formativa de eGate a Ensemble cuando la Comunidad de Desarrolladores se convirtió en un compañero esencial: un lugar para explorar, conectar y aprender.

Pero el progreso rara vez llega sin obstáculos. Muchos retos surgieron de un conocimiento interno limitado o de la escasez de recursos en línea. La lección aprendida: refrescad la mente. Daos un respiro. Volved con claridad. Resolver problemas tiene tanto que ver con el ritmo como con la perseverancia.

Con el tiempo, a medida que más miembros se fueron uniendo, la Comunidad de Desarrolladores evolucionó hasta convertirse en un colectivo más rico en experiencia compartida. Y con ese crecimiento llegó un nuevo papel: pasar de preguntar principalmente a ayudar con confianza a los recién llegados que afrontan los mismos obstáculos que uno encontró al principio. Entre los momentos más gratificantes están las oportunidades de devolver lo aprendido: responder publicaciones y guiar a otros a través de complejidades que antes parecían abrumadoras. Estos momentos reflejan el verdadero espíritu de la Comunidad: colaboración, mentoría y empoderamiento.

El mensaje para los recién llegados es alentador y directo:

Aunque hay mucho conocimiento disponible, no tengáis miedo de hacer preguntas obvias que puedan sonar ridículas. Puede que la respuesta ya esté en la Comunidad de Desarrolladores, pero quizá no sea reconocible según cómo formuléis vuestra pregunta. No tengáis miedo de publicar.

De cara al futuro, hay entusiasmo por profundizar en las capacidades FHIR dentro de Health Connect, para mejorar la mensajería HL7 y ampliar las competencias de interoperabilidad.

Fuera del trabajo, la vida de Scott se centra en la familia, en apoyar el negocio de su pareja, disfrutar del tiempo con los perros y jugar cuando el tiempo lo permite. Aunque no siempre es fácil separar el trabajo de la vida personal, estas pasiones aportan equilibrio y perspectiva.

Esta historia es un testimonio de lo que la curiosidad, la resiliencia y la voluntad de compartir pueden aportar a una comunidad. Celebra a un colaborador que encarna lo mejor de la Comunidad de Desarrolladores: aprender continuamente, ayudar constantemente y elevar siempre a los demás en el camino.

🙏 ¡Celebremos contar con @Scott Roth su dedicación, habilidad y contribuciones a la Comunidad de Desarrolladores!

Discussion (0)1
Log in or sign up to continue
Article
· Dec 9, 2025 11m read

Customizing API Test Code Generation with Mustache Templates

The previous article introduced IrisOASTestGen, a tool designed to generate REST API test code for InterSystems IRIS based on OpenAPI 2.0 specifications. It demonstrated how to scaffold test cases using the default templates bundled with OpenAPI Generator.

This follow-up focuses on the next natural step: customizing the generated test code.
By extending the code generation logic with Mustache templates, it becomes possible to express richer semantics, implement CRUD-aware tests, and create more meaningful test suites.

Discussion (0)1
Log in or sign up to continue
Announcement
· Dec 9, 2025

附完整报告下载 | InterSystems在《2025年ISG买家指南:数据平台》中被评为“典范级领导者”

InterSystems 在《ISG/Ventana 买家指南》(ISG/Ventana Buyers Guide)中综合排名第二——领先于微软、亚马逊云服务(AWS)、谷歌和IBM。

在以创新、敏捷和智能应用为特征的市场中,InterSystems IRIS作为一款完整的云优先数据平台脱颖而出。凭借其在适应性(Adaptability)、可管理性(Manageability)以及总拥有成本/投资回报率(TCO/ROI)方面的卓越得分,InterSystems在产品和客户体验方面均被公认为“典范级领导者(Exemplary Leader)”。

在《2025年ISG买家指南:数据平台》(2025 ISG Buyers Guide™)中,InterSystems被评为“综合领导者(Overall Leader)”,在24家全球供应商中位列第二,仅次于甲骨文,领先于谷歌云和微软等主要厂商。

欢迎下载《2025年ISG买家指南:数据平台》

数据平台不断发展,以支持智能应用和实时分析,随之而来,选择合适的供应商变得至关重要。本报告提供了一个基于研究的框架来指导您的决策,向您展示了为何InterSystems是数据驱动型企业的可靠合作伙伴。

您将在报告中了解到如下内容:

  • InterSystems IRIS如何借助AI实现高性能,以同时支持运营和分析工作负载。
  • InterSystems 为何能够在适应性(Adaptability)方面获评最高分,如何助力企业轻松实现定制和集成。
  • InterSystems在客户成功方面的投资如何转化为实际的投资回报率(ROI)。
  • 横向对比了超过25家领先的数据平台供应商
有什么想进一步了解的内容,欢迎给我们留言!
Discussion (0)1
Log in or sign up to continue
Article
· Dec 9, 2025 15m read

Implementing openEHR with IRIS for Health

Does your blood run cold when you hear about openEHR? Do archetypes give you goosebumps?

Overcome your fears with this article and master OpenEHR using the capabilities of InterSystems IRIS for Health!

What is openEHR?

openEHR is an open, vendor-neutral specification designed to represent, store, and exchange clinical information in a semantically rich and long-term sustainable way. Instead of defining fixed message structures (as many interoperability standards do) OpenEHR separates clinical knowledge from technical implementation through a multi-layered modelling approach.

At its core, openEHR relies on three fundamental concepts:

  • Reference Model (RM)
    A model that defines the core structures used in health records, such as Compositions, Entries, Observations, Evaluations, and Actions. The RM is deliberately generic and technology-agnostic.
  • Archetypes
    Machine-readable models (expressed in ADL) that define the detailed clinical semantics for a specific concept, such as a blood pressure measurement or a discharge summary. Archetypes constrain the RM and provide a reusable clinical vocabulary.
  • Templates (OPT files)
    Specializations built on top of archetypes. Templates tailor archetypes to a specific use case, system, or form (for example, a vital signs template, or a regional discharge note). Templates eliminate optionality and produce operational definitions that systems can safely implement.

Let's see an example of a RAW file base on a Composition (in JSON):

 
Spoiler

This layered modelling approach enables openEHR systems to remain stable over years—even decades—while allowing clinical models to evolve independently from the underlying software platform.

A key piece of the openEHR ecosystem is AQL (Archetype Query Language), the standard query language used to retrieve clinical data stored in openEHR repositories.

Archetype Query Language (AQL)

AQL is inspired by SQL but adapted to the openEHR information model. Instead of querying relational tables, AQL allows developers to query structured clinical content inside openEHR Compositions, taking advantage of archetype paths.

Key characteristics of AQL

  • Path-based querying: AQL uses archetype paths (similar to XPath) to navigate the internal structure of a Composition, such as:
    /content[openEHR-EHR-OBSERVATION.blood_pressure.v1]/data/events/time
  • Clinical semantic awareness: Queries refer to clinical concepts (archetypes, entry types, data points) rather than database column names.
  • Flexible WHERE clauses: AQL supports filtering on values within Compositions, e.g. systolic blood pressure > 140 or diagnoses matching a specific code.
  • Multi-composition queries: It can retrieve data across multiple Compositions, for example all Observations for a given patient over time.
  • Vendor-neutral: Any openEHR implementation that supports AQL should, in principle, accept the same queries.

Let's see an example of AQL:

SELECT
    c/uid/value AS composition_id,
    o/data[at0001]/events[at0006]/data[at0003]/value/magnitude AS systolic,
    o/data[at0001]/events[at0006]/data[at0004]/value/magnitude AS diastolic
FROM
    EHR e
    CONTAINS COMPOSITION c
    CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.blood_pressure.v1]
WHERE
    e/ehr_id/value = '12345'
AND
    o/data[at0001]/events[at0006]/time/value > '2023-01-01T00:00:00Z'

OpenEHR - FHIR comparation

Technically speaking, OpenEHR and FHIR are very very similar. Information based in documental format, API REST, etc. Let's see the main concepts of FHIR and OpenEHR and its correlation:

What do we need to implement openEHR in IRIS for Health?

RAW Composition Storage

  • Store incoming Compositions in RAW JSON or XML exactly as received.
  • No transformation should modify semantic content.
  • For our example we are going to work with JSON format, but there are multiple options.

REST API Services

Our implementation has to expose the following API REST:

EHR Services

To create and locate a patient's "history."

  • POST /ehr: Creates a new EHR.
  • GET /ehr/{ehr_id}: Retrieve EHR metadata.
  • GET /ehr?subject_id=?: Locate an EHR based on external identifiers.

Composition Services

To store patient's clinical information.

  • POST /ehr/{id}/composition: Commit a new composition in RAW format. Validate against OPT when possible
  • GET /composition/{version_uid}: Retrieve a specific version.
  • GET /ehr/{id}/compositions: List compositions for an EHR.
  • DELETE /composition/{uid}: Mark composition as deleted (logical delete).

AQL Query Endpoint

  • POST /query/aql: Accept an AQL query, translate to IRIS SQL or JSON-path-based lookup and return results in openEHR canonical JSON.

RAW Composition Validation

We have to force validation of RAW compositions based on OPT2 files, we can't save in our repository any JSON that we will receive.

Implementing openEHR in IRIS for Health

Well, to implement all the functionalities available in a openEHR server will take some time, so I'm going to focus in the core functionalities:

Using web application to deploy REST API Service

To publish a REST API is straight forward, we only need two components, a class extending %CSP.REST and a new record in the list of web applications. Let's see the header of our extended %CSP.REST class:

As you can see we have defined all the minimum required routes for our repository. We have all the managament of compositions, OPT2 files for RAW validations and finally, execution of AQL queries.

For our example we are not going to define any security configuration, but JWT Authentication is recommended.

Ok, we have our class and our %CSP.REST class, what else?

RAW validations

openEHR is anything but new, so you can guess that there are multiple libraries to support some functionalities like raws validations. For this example we've used and customized Arche library, an open source library developed in Java to validate rawcompositions against OPT2 files. The validator is a jar file configured from the External Language Server (by default on docker image deployment) and invoked before to save the raw using the JavaGateway functionality:

set javaGate = $system.external.getJavaGateway()
set result = javaGate.invoke("org.validator.openehr.Cli", "validate", filePath, optPath)

If the raw is validated the JSON document will be saved into the database.

JSON raw storage

We could use DocDB, but we want to leverage the performance of SQL databases. One of the biggest problems related with openEHR is the poor performance querying documents, so we are going to pre-process the compositions to get common information to all composition types to boost queries.

Our Composition class define the following properties:

Class OPENEHR.Object.Composition Extends (%Persistent, %XML.Adaptor) [ DdlAllowed ]
{
/// Description
Property ehrId As %Integer;
Property compositionUid As %String(MAXLEN = 50);
Property compositionType As %String;
Property startTime As %DateTime;
Property endTime As %Date;
Property archetypes As list Of %String(MAXLEN = 50000);
Property doc As %String(MAXLEN = 50000);
Property deleted As %Boolean [ InitialExpression = 0 ];
Index compositionUidIndex On compositionUid;
Index ehrIdIndex On ehrId;
Index ExampleIndex On archetypes(ELEMENTS);
}
  • ehrId: with the electronic health record of the patient.
  • compositionUid: composition identifier.
  • compositionType: type of composition saved.
  • startTime: time when the composition was created.
  • archetypes: list of archetypes contained on the composition.
  • doc: JSON format document.
  • deleted: boolean value for soft deletes.

The indexes will be used to improve the queries.

AQL support

As we said before AQL is a path-based query language. How could we emulate the same behaviour in IRIS for Health? Welcome to JSON_TABLE!

What is JSON_TABLE?

The JSON_TABLE function returns a table that can be used in a SQL query by mapping JSON values into columns. Mappings from a JSON value to a column are written as SQL/JSON path language expressions.

As a table-valued function, JSON_TABLE returns a table that can be used in the FROM clause of a SELECT statement to access data stored in a JSON value; this table does not persist across queries. Multiple calls to JSON_TABLE can be made within a single FROM clause and can appear alongside other table-valued functions.

We have implemented a ClassMethod in Python to translate AQL into SQL, but there is a problem, AQL is based on relative paths of the archetypes, not in absolute paths, so we need identify the absolute path for each archetype and join it with the relative path of the AQL.

How can we know the absolute path? Very easy! We can find it when the user save the OPT2 file for the composition into IRIS! As soon as we get the absolute path we save it into a CSV file specific for the composition (it would be saved into a global or any other way) so, we only have to get the absolute path from the specific composition file or, if the AQL doesn't define the composition, search into the available CSV files the absolute path for the archetypes of the AQL.

Let's see how it works. Here is an example of AQL to get all the diagnosis with a specific ICD-10 code:

SELECT
  c/uid/value AS comp_uid,
  c/context/start_time/value AS comp_start_time,
  dx/data[at0001]/items[at0002]/value/value AS diagnosis_text,
  dx/data[at0001]/items[at0003]/value/defining_code/code_string AS diagnosis_code
FROM EHR e
CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.diagnostic_summary.v1]
CONTAINS SECTION s[openEHR-EHR-SECTION.diagnoses_and_treatments.v1]
CONTAINS EVALUATION dx[openEHR-EHR-EVALUATION.problem_diagnosis.v1]
WHERE dx/data[at0001]/items[at0003]/value/defining_code/code_string
      MATCHES {'E11', 'I48.0'}
ORDER BY c/context/start_time/value DESC

The funcion Transform from OPENEHR.Utils.AuxiliaryFunctions class translates it into:

SELECT comp_uid, comp_start_time, diagnosis_text, diagnosis_code 
FROM ( 
    SELECT c.compositionUid AS comp_uid, 
        jt_root.comp_start_time AS comp_start_time, 
        jt_n1.diagnosis_text AS diagnosis_text, 
        jt_n1.diagnosis_code AS diagnosis_code 
    FROM OPENEHR_Object.Composition AS c, 
        JSON_TABLE( c.doc, '$' COLUMNS ( comp_start_time VARCHAR(4000) PATH
            '$.context.start_time.value' ) ) AS jt_root, 
        JSON_TABLE( c.doc, '$.content[*]?(@._type=="SECTION" && @.archetype_node_id==
            "openEHR-EHR-SECTION.diagnoses_and_treatments.v1").items[*]?
            (@._type=="EVALUATION" && @.archetype_node_id=="openEHR-EHR-EVALUATION.problem_diagnosis.v1")'
            COLUMNS ( 
                diagnosis_text VARCHAR(4000) PATH '$.data[*]?(@.archetype_node_id=="at0001").items[*]?
                    (@.archetype_node_id=="at0002").value.value', 
                diagnosis_code VARCHAR(255) PATH '$.data[*]?(@.archetype_node_id=="at0001").items[*]?
                    (@.archetype_node_id=="at0003").value.defining_code.code_string' ) ) AS jt_n1 
    WHERE ('openEHR-EHR-COMPOSITION.diagnostic_summary.v1' %INLIST (c.archetypes) 
        AND 'openEHR-EHR-EVALUATION.problem_diagnosis.v1' %INLIST (c.archetypes)) 
        AND (jt_n1.diagnosis_code LIKE '%E11%' OR jt_n1.diagnosis_code LIKE '%I48.0%') ) U 
ORDER BY comp_start_time DESC

Let's try our API REST with an AQL:

Success!

And now with a numeric comparation:

SELECT
  c/uid/value AS comp_uid,
  c/context/start_time/value AS comp_start_time,
  a/items[at0024]/value/magnitude AS creatinine_value,
  a/items[at0024]/value/units AS creatinine_units
FROM EHR e
CONTAINS COMPOSITION c[openEHR-EHR-COMPOSITION.lab_results_and_medications.v1]
CONTAINS OBSERVATION o[openEHR-EHR-OBSERVATION.laboratory_test_result.v1]
CONTAINS CLUSTER a[openEHR-EHR-CLUSTER.laboratory_test_analyte.v1]
WHERE a/items[at0001]/value/value = 'Creatinina (mg/dL)'
  AND a/items[at0024]/value/magnitude BETWEEN 1.2 AND 1.8
ORDER BY c/context/start_time/value DESC

Transformed into:

SELECT comp_uid, comp_start_time, ldl_value, ldl_units 
FROM ( 
    SELECT c.compositionUid AS comp_uid, jt_root.comp_start_time AS comp_start_time,
        jt_n1.ldl_value AS ldl_value, jt_n1.ldl_units AS ldl_units 
    FROM OPENEHR_Object.Composition AS c, 
        JSON_TABLE( c.doc, '$' COLUMNS ( comp_start_time VARCHAR(4000) 
            PATH '$.context.start_time.value' ) ) AS jt_root, 
        JSON_TABLE( c.doc, '$.content[*]?(@._type=="OBSERVATION" && 
            @.archetype_node_id=="openEHR-EHR-OBSERVATION.laboratory_test_result.v1")
                .data.events[*]?(@._type=="POINT_EVENT").data.items[*]?(@._type=="CLUSTER" &&
                @.archetype_node_id=="openEHR-EHR-CLUSTER.laboratory_test_analyte.v1")'
                COLUMNS ( 
                    ldl_value NUMERIC PATH '$.items[*]?
                        (@.archetype_node_id=="at0024").value.magnitude', 
                    ldl_units VARCHAR(64) PATH '$.items[*]?
                        (@.archetype_node_id=="at0024").value.units', 
                    _w1 VARCHAR(4000) PATH '$.items[*]?
                        (@.archetype_node_id=="at0001").value.value' ) ) AS jt_n1 
    WHERE ('openEHR-EHR-COMPOSITION.lab_results_and_medications.v1' %INLIST (c.archetypes) 
        AND 'openEHR-EHR-OBSERVATION.laboratory_test_result.v1' %INLIST (c.archetypes) 
        AND 'openEHR-EHR-CLUSTER.laboratory_test_analyte.v1' %INLIST (c.archetypes)) 
        AND jt_n1._w1 = 'LDL (mg/dL)' AND jt_n1.ldl_value <= 130 ) 
    U ORDER BY comp_start_time DESC

Another resounding success!

Conclusions

Well, as you can see in this example, InterSystems IRIS for Health provide to you of all the tools required to implement and deploy an openEHR repository. If you have any question don't hesitate to write a comment!

Disclaimer

The associated code is just a proof of concept, It does not aim to implement a repository with all the functionalities but to demonstrate that it is perfectly possible with InterSystems IRIS for Health. Enjoy!

Discussion (0)1
Log in or sign up to continue