Encontrar

Announcement
· Apr 23

[Video] O que é InterSystems OMOP?

Olá, Comunidade! 

Buscando insights práticos a partir da sua pesquisa em saúde? Veja como o InterSystems OMOP pode ajudar:

👨‍🔬O que é InterSystems OMOP? 

Com o InterSystems OMOP — um software como serviço baseado em nuvem — você pode transformar dados clínicos no formato OMOP e obter insights mais rapidamente.

Os benefícios incluem:

  • Crie repositórios de dados de pesquisa com eficiência.
  • Insira, transforme e armazene dados com facilidade.

🎬 Assista ao vídeo para saber mais!

Discussion (0)1
Log in or sign up to continue
Article
· Apr 23 6m read

OMOP Odyssey - AWS HealthLake ( Strait of Messina )

Nearline FHIR® Ingestion to InterSystems OMOP from AWS HealthLake

This part of the OMOP Journey we reflect before attempting to challenge Scylla on how fortunate we are that InterSystems OMOP transform is built on the Bulk FHIR Export as the source payload.  This opens up hands off interoperability with the InterSystems OMOP transform across several FHIR® vendors, including Amazon Web Services HealthLake.

HealthLake Bulk FHIR Export
 

Healthlake supports bulk fhir import/export from the cli or api, the premise is simple and the docs are over exhaustive, we'll save a model the trouble of training on it again and link it if interested.  The more valuable thing to understand of the heading of this paragraph is the implementation of the bulk fhir export standard itself.


Nearline?

Yeah, only "Nearline" ingestion, as the HealthLake export is the whole data store, and does not have a feature to be incremental. Additionally it does not support a resource based trigger, so it has to be invoked at an interval or via some other means yet to be apparent to me at the resource activity level.  Still a great number of ways to poke the export throughout AWS, and without incremental exports you only want it to be triggered inside a tolerable processing window anyway for the whole datastore.

The Whole Datastore?

Yes, the job exports all the resources into a flat structure.  Though it may not be the cleanest process to import the same data to catch the incremental data, the InterSystems OMOP transform should handle it.
 

Walkthrough

Trying to make this short and to the point, the illustration below really encapsulates what a that a scheduled lambda can glue these two solutions together and automate your OMOP ingestion.



Step One, AWS: Create Bucket

Create a bucket with a few of keys, one is shared with InterSystems OMOP for ingesting into the FHIR Transformation, the others will support the automated ingestion.


Explanations of the keys:

  • export - landing area for the raw resource ndjson from the job
  • from-healthlake-to-intersystems-omop - landing area for the create .zip and integtration point with InterSystems OMOP
  • output - job output

Step Two, InterSystems OMOP

Create the Deployment providing the arn of the bucket and the keys from above, ie: `from-healthlake-to-intersystems-omop` key.

Snag the example policy from the post configuration step as indicated and apply it to the bucket in AWS.  There are some exhaustive examples of this in a previous post OMOP Odyssey - InterSystems OMOP Cloud Service (Troy).

Step Three, Schedule a HealthLake Export to Expected InterSystems OMOP format 💫

The explanation of the flow of things is in the code itself as well, but I will also put it in the explanation in the form of a prompt so maybe you can land in the same spot with your own changes.

In python, show me how to start a HealthLake export job, export it to a target location, and poll the status of the job until it is complete, then read all of the ndjson files it creates and into a zip them without the relative path included in the zip and upload it to another location in the same bucket, once the upload is complete, remove the exported files from the export job.

The resulting function and code are the following:

import json
import boto3
import uuid
import boto3
import zipfile
import io
import os
import time


def lambda_handler(event, context):
    # Botos
    s3 = boto3.client('s3')
    client = boto3.client('healthlake')

    # Vars
    small_guid = uuid.uuid4().hex[:8]
    bucket_name = 'intersystems-omop-fhir-bucket'
    prefix = 'export/'  # Make sure it ends with '/'
    output_zip_key = 'from-healthlake-to-intersystems-omop/healthlake_ndjson_' + small_guid + '.zip'
    datastore_id = '9ee0e51d987e#ai#8ca487e8e95b1d'
    response = client.start_fhir_export_job(
        JobName='FHIR2OMOPJob',
        OutputDataConfig={
            'S3Configuration': {
                'S3Uri': 's3://intersystems-omop-fhir-bucket/export/',
                'KmsKeyId': 'arn:aws:kms:us-east-2:12345:key/54918bec-#ai#-4710-9c18-1a65d0d4590b'
            }
        },
        DatastoreId=datastore_id,
        DataAccessRoleArn='arn:aws:iam::12345:role/service-role/AWSHealthLake-Export-2-OMOP',
        ClientToken=small_guid
    )

    job_id = response['JobId']
    print(f"Export job started: {job_id}")

    # Step 2: Poll until the job completes
    while True:
        status_response = client.describe_fhir_export_job(
            DatastoreId=datastore_id,
            JobId=job_id
        )

        status = status_response['ExportJobProperties']['JobStatus']
        print(f"Job status: {status}")

        if status in ['COMPLETED', 'FAILED', 'CANCELLED']:
            break
        time.sleep(10)  # wait before polling again
    # Step 3: Final result
    if status == 'COMPLETED':
        output_uri = status_response['ExportJobProperties']['OutputDataConfig']['S3Configuration']['S3Uri']
        print(f"Export completed. Data available at: {output_uri}")

    # Get list of all objects with .ndjson extension under the prefix
    ndjson_keys = []
    paginator = s3.get_paginator('list_objects_v2')
    for page in paginator.paginate(Bucket=bucket_name, Prefix=prefix):
        for obj in page.get('Contents', []):
            key = obj['Key']
            if key.endswith('.ndjson'):
                ndjson_keys.append(key)

    # Create ZIP in memory
    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
        for key in ndjson_keys:
            obj = s3.get_object(Bucket=bucket_name, Key=key)
            file_data = obj['Body'].read()
            arcname = os.path.basename(key)
            zf.writestr(arcname, file_data)

    zip_buffer.seek(0)

    # Upload ZIP back to S3
    s3.put_object(
        Bucket=bucket_name,
        Key=output_zip_key,
        Body=zip_buffer.getvalue()
    )
    print(f"Created ZIP with {len(ndjson_keys)} files at s3://{bucket_name}/{output_zip_key}")
    # Clean up
    paginator = s3.get_paginator('list_objects_v2')
    pages = paginator.paginate(Bucket=bucket_name, Prefix=prefix)

    for page in pages:
        if 'Contents' in page:
            # Exclude the folder marker itself if it exists
            delete_keys = [
                {'Key': obj['Key']}
                for obj in page['Contents']
                if obj['Key'] != prefix  # protect the folder key (e.g., 'folder1/')
            ]

            if delete_keys:
                s3.delete_objects(Bucket=bucket_name, Delete={'Objects': delete_keys})
                print(f"Deleted {len(delete_keys)} objects under {prefix}")
        else:
            print(f"No objects found under {prefix}")
    else:
        print(f"Export job did not complete successfully. Status: {status}")
    
    return {
        'statusCode': 200,
        'body': json.dumps(response)
    }


This function fires at an interval of about every 10 minutes via an EventBridge schedule, this will have to be adjusted to meet your workload characteristics.
 

Step Four, Validate Ingestion ✔

LGTM! we can see the zips in the ingestion location are successfully getting picked up by the transform in InterSystems OMOP.

Step Five, Smoke Data ✔

LGTM! FHIR Organization Resource = OMOPCDM54 care_site.

Discussion (0)1
Log in or sign up to continue
Question
· Apr 23

IntegratedML

Hi Guys,

I'm a newbie that doesn't know much about integratedML and looking for a first push into it, I've setup VSCode with my IRIS 2024.3 running in Linux and my understanding is that we can create models using SQL, so first, do I need to setup a specific environment where I can run my SQL commands to create & train Models or just using SMP, and do I need to install or enable Python ..etc things required to setup the environment?

Then if there are easy samples or training materials on how to create, train & deploy my model?  

 

Thanks

2 Comments
Discussion (2)3
Log in or sign up to continue
InterSystems Official
· Apr 23

Les versions de maintenance 2024.1.4 et 2023.1.6 d'InterSystems IRIS, IRIS for Health et HealthShare HealthConnect sont désormais disponibles

Les versions de maintenance 2024.1.4 et 2023.1.6 de la plateforme de données InterSystems IRIS®, d'InterSystems IRIS® for HealthTM et de HealthShare® Health Connect sont désormais disponibles en disponibilité générale (GA). Ces versions incluent les correctifs pour l'alerte suivante récemment émise : Alerte : Requêtes SQL renvoyant des résultats erronés | InterSystems. N'hésitez pas à partager vos commentaires via la Communauté des développeurs afin que nous puissions développer ensemble un meilleur produit.

Documentation

Vous trouverez les listes détaillées des modifications et des listes de contrôle des mises à niveau sur les pages suivantes :

Programmes d'accès anticipé (EAP)

De nombreux PAE sont actuellement disponibles. Consultez cette page et inscrivez-vous auprès des personnes intéressées.

Comment obtenir le logiciel ?

Les packages d'installation complets pour InterSystems IRIS et InterSystems IRIS for Health sont disponibles sur la page « Kits complets pour la plateforme de données InterSystems IRIS » du WRC. Les kits HealthShare Health Connect sont disponibles sur la page « Kits complets HealthShare » du WRC. Les images de conteneurs sont disponibles sur le registre de conteneurs InterSystems.

Disponibilité et informations sur les packages

Cette version est fournie avec des packages d'installation classiques pour toutes les plateformes prises en charge, ainsi que des images de conteneurs au format Docker. Pour obtenir la liste complète, consultez le document « Plateformes prises en charge ». Les numéros de build de ces versions de maintenance sont : 2024.1.4.512.0 et 2023.1.6.809.0.

Discussion (0)0
Log in or sign up to continue
InterSystems Official
· Apr 23

インターシステムズ製品 2024.1.4 と 2023.1.6 リリースのご案内

インターシステムズは、InterSystems IRIS®データプラットフォームInterSystems IRIS® for HealthTMHealthShare® Health Connect のメンテナンスバージョン 2024.1.4 2023.1.6 をリリースしました。このリリースには以前ご案内した 警告:SQLクエリが間違った結果を返す の修正を含みます。製品の品質改善のために、開発者コミュニティを通じてぜひご意見をお聞かせください。

ドキュメント

詳細な変更リストとアップグレードチェックリストはこちらのドキュメントをご参照ください(すべて英語です):
✅ 2024.1.4

✅ 2023.1.6

 

早期アクセスプログラム (Early Access Programs; EAPs)

多くの 早期アクセスプログラムをご用意しております。こちらの ページ からご興味のあるプログラムにお申込みいただけます。

キットの入手方法

InterSystems IRIS と InterSystems IRIS for Health の通常インストーラパッケージ形式のキットは WRC Direct の IRIS ダウンロードページ から、HealthShare Health Connect のキットは HealthShare ダウンロードページ からそれぞれ入手してください。
コンテナイメージは InterSystems Container Registry から入手できます。

利用可能なパッケージ情報

本リリースでは従来からのインストーラパッケージ形式とコンテナイメージ形式をご用意しています。その一覧は、 2024.1サポートプラットフォームページ(英語) と 2023.1サポートプラットフォームページ(英語) をご覧ください。

本メンテナンスリリースのバージョン番号は、2024.1.4.512.0  2023.1.6.809.0 です。

Discussion (0)1
Log in or sign up to continue