Contestant

Ever since I started using IRIS, I have wondered if we could create agents on IRIS. It seemed obvious: we have an Interoperability GUI that can trace messages, we have an underlying object database that can store SQL, Vectors and even Base64 images. We currently have a Python SDK that allows us to interface with the platform using Python, but not particularly optimized for developing agentic workflows. This was my attempt to create a Python SDK that can leverage several parts of IRIS to support development of agentic systems.

4 0
0 28
Contestant

TL;DR: This article demonstrates how to run GraphRAG-style hybrid retrieval—combining vector similarity, graph traversal, and full-text search—entirely within InterSystems IRIS using the iris-vector-graph package. We use a fraud detection scenario to show how graph patterns reveal what vector search alone would miss.

2 0
0 8
Contestant

Vector search is a retrieval method that converts text, images, audio, and other data into numeric vectors using an AI model, and then searches for items that are semantically close. It enables “semantic similarity search” from free text, which is difficult with keyword search alone.

However, in real use, I encountered cases where results that are “close in meaning” but logically the opposite appeared near the top of the search results.

This is a serious issue in situations where affirmation vs. negation matters. If the system returns the wrong answer, the impact can be significant, so we cannot ignore this problem.

This article does not propose a new algorithm. I wrote it to share a practical way I found useful when semantic search fails due to negation.

0 0
0 1