﻿ Calculate PI | InterSystems Developer Community | Caché

Calculate PI

Hi,

I am looking for an Objectscript example to calculate PI (3,14) with at least 100 Decimals.

There are many examples on the internet (https://rosettacode.org/wiki/Pi), but I want to use it for testing purposes.

Regards,

Peter van Voorthuysen

• + 1
• 1
• 277
• 7
• 2

Translation of: BASIC256

calcPI(n=1000) public {
len = 10*n\4,
needdecimal \$\$\$YES,
nines = 0,
predigit = 0  ;# {First predigit is a 0}

j=1:1:len a(j-1)=2 ;# {Start with 2s}

j=1:1:{
q=0
i=len:-1:1 {
;#  {Work backwards}
= 10*a(i-1) + (q*i),
a(i-1)=x#(2*i-1),
q=x\(2*i-1)
}
a(0)=q#10,
q=q\10
q=9 {
nines nines + 1
}elseif q=10 {
predigit+1 outputd
nines>0 = 1:1:nines =  0 outputd
predigit = 0, nines = 0
}else{
predigit,predigit outputd
nines {
= 1:1:nines = 9 outputd
nines = 0
}
}
}
predigit
q

outputd()
if needdecimal {
q:d=0
d_"."
needdecimal \$\$\$NO
else {
d
}
}

The greater "n", the higher the accuracy.

If there is a lack of RAM, you can easily replace the local array "a" with globals ^||a or ^a.

Thanks, this works great.

Translation of: LUA

calcPILua(n=1000) public {
len = 10*n\3,
nines = 0,
predigit = 0

j=1:1:len a(j)=2

j=1:1:{
q=0
i=len:-1:1 {
= 10*a(i) + (q*i),
a(i)=x#(2*i-1),
q=x\(2*i-1)
}
a(1)=q#10,
q=q\10
q=9 {
nines nines + 1
}elseif q=10 {
predigit+1
= 1:1:nines 0
predigit = 0, nines = 0
}else{
predigit
predigit q
nines {
= 1:1:nines 9
nines = 0
}
}
}
predigit
}

The result of this example is exactly the same as the result of the program C# (tested at n=10000).

Thanks again, both routines work OK now.

Regards,

Peter

I found out the reason for the difference in the result BASIC256:

len = 10*n\4,

must be

len = 10*n\3,

Error on site.

It occurs to me that the Visual Basic solution works with minimal modification as Caché Basic: weaken the DIM statements, change Debug.Print to Print, and replace the call to Format\$().

Option Explicit

Const VECSIZE = 3350
Const BUFSIZE = 201
Dim buffer
Dim vect
Dim more, karray, num, k, l, n

For n = 1 To VECSIZE
vect(n) = 2
Next n
For n = 1 To BUFSIZE
karray = 0
For l = VECSIZE To 1 Step -1
num = 100000 * vect(l) + karray * l
karray = num \ (2 * l - 1)
vect(l) = num - karray * (2 * l - 1)
Next l
k = karray \ 100000
buffer(n) = more + k
more = karray - k * 100000
Next n
Print buffer(1)
Print "."
l = 0
For n = 2 To BUFSIZE
Print Right("00000" & buffer(n), 5)
l = l + 1
If l = 10 Then
l = 0
Print 'line feed
End If
Next n

I wrote this a while ago. Just ran on a MacBook Pro Mid 2015, 2.8 GHz Intel Core i7.

It computed the first 1000 digits in less than 1 minute, 2000 digits in 5 minute, 3000 digits, in 14 minute, 4000 digits in 32 minute, 5000 digits in 60 minute...

PI    ; SRS 2011-07-18
; Compute PI using Plouffe and Bellard algorithm, based upon "C" code
; found at <http://iweb.dl.sourceforge.net/project/projectpi/
; Digit%20Extraction%20Methods/Plouffe%20and%20Bellard%20v1/pi1_f.c>.
KILL ^PI,^PRIME
SET ^PI=-1
FOR I=0:1:9 JOB C(\$INCREMENT(^PI))
QUIT
C(p)    NEW \$ETRAP SET \$ETRAP="DO ^%ETN"
SET n=p*9+1
SET bign=+\$TRANSLATE(n+20*\$ZLN(10)/\$ZLN(2),".","!")
SET sum=0
SET a=3 FOR  QUIT:a>(2*bign)  DO  SET a=\$\$NP(a)
. SET vmax=+\$PIECE(\$ZLN(2*bign)/\$ZLN(a),".")
. SET av=1 FOR i=1:1:vmax SET av=av*a
. SET s=0,num=1,den=1,v=0,kq=1,kq2=1
. FOR k=1:1:bign DO
. . SET t=k
. . IF kq'<a FOR  SET t=t\a,v=v-1 IF t#a SET kq=0 QUIT
. . SET kq=kq+1,num=num*t#av
. . SET t=2*k-1
. . DO:kq2'<a
. . . IF kq2=a FOR  SET t=t\a,v=v+1 QUIT:t#a
. . . SET kq2=kq2-a
. . SET den=den*t#av,kq2=kq2+2
. . DO:v>0
. . . SET t=\$\$IM(den,av),t=t*num#av,t=t*k#av
. . . FOR i=v+1:1:vmax SET t=t*a#av
. . . SET s=s+t
. . . SET:s'<av s=s-av
. SET t=\$\$PM(10,n-1,av),s=s*t#av
. SET sum=sum+(s/av),sum=+("."_\$PIECE(sum,".",2))
SET ^PI(p)=\$EXTRACT(\$PIECE(sum,".",2)_"000000000",1,9)
JOB C(\$INCREMENT(^PI))
QUIT
NP(a)    NEW (a) FOR  SET r=\$ORDER(^PRIME(a)) QUIT:r'=""  DO  QUIT:r'=""
. LOCK ^PRIME
. SET r=\$ORDER(^PRIME(a)) IF r'="" LOCK  QUIT
. IF \$DATA(^PRIME)=0 SET ^PRIME=3,^PRIME(2)="",^PRIME(3)="" LOCK  QUIT
. FOR r=^PRIME:2 DO  IF pr SET ^PRIME(r)="" QUIT:r>a
. . SET pr=1 FOR p=3:2:\$ZSQR(r) IF r#p=0 SET pr=0 QUIT
. SET ^PRIME=r
. LOCK
QUIT r
IM(x,y)    NEW (x,y)
SET u=x,v=y,c=1,a=0
FOR  SET q=v\u,t=c,c=a-(q*c),a=t,t=u,u=v-(q*u),v=t QUIT:u=0
SET a=a#y
SET:a<0 a=a+y
QUIT a
PM(a,b,m)    NEW (a,b,m)
SET r=1,aa=a
FOR  SET:b#2 r=r*aa#m SET b=b\2 QUIT:b=0  SET aa=aa*aa#m
QUIT r

Intel i5-2400

10000 digits ~ 58 sec.

calcPI(n) public {
s \$lb(len,nines,predigit,r)=\$lb(10*n\3,0,0,"")

i=1:1:len a(i)=2

j=1:1:{
q=0
i=len:-1:1 x=10*a(i)+(q*i), a(i)=x#(2*i-1), q=x\(2*i-1)
a(1)=q#10, q=q\10
q=9 {
nines=nines+1
}elseif q=10 {
r=r_(predigit+1)_\$\$repeat^%qarfunc(0,nines), predigit=0, nines=0
}else{
r=r_predigitpredigit=q
s:nines r=r_\$\$repeat^%qarfunc(9,nines), nines=0
}
}
r_predigit
}