based my solution for 24.2 on the following equation (found by manually reading/understanding the input):

Equation:

zN = A  ⊕. B
zN = [xN ⊕ yN]. ⊕. ( [xN−1∧yN−1] ∨ [input gates of zN−1 w/ AND])

In the input, for each zN​, the equation defines the relationship A  <OP>  B = zN. If the operator <OP> is not XOR, this is incorrect. In such cases, zN​ needs to be swapped with tN, where tN can be derived using the property: A⊕B=tN.

Similarly, if the values A and B found using the above equation do not match the input gates of XOR for zN, this indicates an intermediate gate (either A or B) needs to be swapped to satisfy the conditions.