In the last post we scheduled 24-hour collections of performance metrics using pButtons. In this post we are going to be looking at a few of the key metrics that are being collected and how they relate to the underlying system hardware. We will also start to explore the relationship between Caché (or any of the InterSystems Data Platforms) metrics and system metrics. And how you can use these metrics to understand the daily beat rate of your systems and diagnose performance problems.

19 10
2 3,577

Your application is deployed and everything is running fine. Great, hi-five! Then out of the blue the phone starts to ring off the hook – it’s users complaining that the application is sometimes ‘slow’. But what does that mean? Sometimes? What tools do you have and what statistics should you be looking at to find and resolve this slowness? Is your system infrastructure up to the task of the user load? What infrastructure design questions should you have asked before you went into production? How can you capacity plan for new hardware with confidence and without over-spec'ing? How can you stop the phone ringing? How could you have stopped it ringing in the first place?

22 13
5 4,060

Ansible helped me solve the problem of quickly deploying Caché and application components for Data Platforms benchmarks. You can use the same tools and methodology for standing up your test labs, training systems, development or other environments. If you deploy applications at customer sites you could automate much of the deployment and ensure that system, Caché and your application are configured to your applications best practice standards.

13 4
0 2,316

** Revised Feb-12, 2018

While this article is about InterSystems IRIS, it also applies to Caché, Ensemble, and HealthShare distributions.

Introduction

Memory is managed in pages. The default page size is 4KB on Linux systems. Red Hat Enterprise Linux 6, SUSE Linux Enterprise Server 11, and Oracle Linux 6 introduced a method to provide an increased page size in 2MB or 1GB sizes depending on system configuration know as HugePages.

At first HugePages required to be assigned at boot time, and if not managed or calculated appropriately could result in wasted resources. As a result various Linux distributions introduced Transparent HugePages with the 2.6.38 kernel as enabled by default. This was meant as a means to automate creating, managing, and using HugePages. Prior kernel versions may have this feature as well however may not be marked as [always] and potentially set to [madvise].

Transparent Huge Pages (THP) is a Linux memory management system that reduces the overhead of Translation Lookaside Buffer (TLB) lookups on machines with large amounts of memory by using larger memory pages. However in current Linux releases THP can only map individual process heap and stack space.

6 9
4 4,418