New post

查找

Article
· Feb 6 3m read

第十六章 L - M 开头的术语

第十六章 L - M 开头的术语

锁表 (lock table)

系统

IRIS 内部的表,存储所有由进程发出的 LOCK 命令。你可以使用系统查看器查看此表。

日志文件 (log files)

系统

系统管理员目录中的文件,包含关于系统操作、错误和指标的消息。这些包括消息日志(messages.log)、系统监视器日志(SystemMonitor.log)、警报日志(alerts.log)、初始化日志(iboot.log)和日志历史记录日志(journal.log)。有关这些日志文件的信息,请参见“监控日志文件”。

逻辑格式 (logical format)

对象(Objects)

对象属性的逻辑格式是在内存中使用的格式。所有的比较和计算都是基于这种格式进行的。

Discussion (0)1
Log in or sign up to continue
Question
· Feb 6

RTF replace string logic corrupting document for viewer

I have an MDM interface with a DTL that takes OBX:5 and replaces "{\E\rtf" with "{\rtf" and "\X0A\" with nothing.  Most rtf's this works without a problem, some others, it corrupts the document.  

Code:

<assign value='..ReplaceStr(..ReplaceStr(source.{OBXgrp(k1).OBX:ObservationValue(1)},"{\E\rtf","{\rtf"),"\X0A\","")' property='target.{OBXgrp(k1).OBX:ObservationValue(1)}' disabled = '0' action='set' />

 

My question is - anyone know of any other "gotchas" that could possibly need to be replaced or something?

I have tried not doing the replace on anything, and the document shows up in viewer as just the rtf code rather a human readable document.  I am at a loss, any direction would be wonderful.

Thanks!

1 Comment
Discussion (1)1
Log in or sign up to continue
Question
· Feb 6

I don't know what I did wrong.

I set up all the credentials and IP, Port, Namespace, SSL/TLS Server Name and .ini file but I still cannot connect to db. and It says 

Iris ODBC][State : 08S01][Native Code 459]
[C:\Windows\system32\odbcad32.exe]
Connection via irisconnect failed: 
Matching SSL server config not found in ssldefs.ini or registry

2 Comments
Discussion (2)1
Log in or sign up to continue
Article
· Feb 6 3m read

Configuração e Aplicação do IntegratedML no InterSystems IRIS

Introdução

O IntegratedML é uma ferramenta poderosa do InterSystems IRIS que permite a criação, treinamento e gerenciamento de modelos de machine learning diretamente no banco de dados, utilizando SQL. Neste artigo, abordaremos a configuração do IntegratedML e sua aplicação em cenários reais, utilizando exemplos SQL que refletem seus dados.

Configuração do IntegratedML

Uma configuração de ML (“ML Configuration”) define o provedor de machine learning que executará o treinamento, além de outras informações necessárias. O IntegratedML possui uma configuração padrão chamada %AutoML, já ativada após a instalação do InterSystems IRIS.

Criando Configuração de ML

Para criar uma nova configuração de ML, podemos utilizar o System Management Portal ou comandos SQL.

Criando Configuração de ML via SQL:

CREATE ML CONFIGURATION MeuMLConfig PROVIDER AutoML USING {'verbosity': 1};

Para definir essa configuração como padrão:

SET ML CONFIGURATION MeuMLConfig;

Para visualizar as configurações de treinamento:

SELECT * FROM INFORMATION_SCHEMA.ML_TRAINING_RUNS;

Aplicação do IntegratedML

Criando um modelo preditivo para estimar a quantidade de energia gerada por uma unidade consumidora:

CREATE MODEL PredicaoEnergia PREDICTING (quantidade_gerada) FROM UnidadeConsumidora;

Treinando o modelo:

TRAIN MODEL PredicaoEnergia;

Fazendo previsões:

SELECT quantidade_gerada, PREDICT(PredicaoEnergia) AS previsao FROM UnidadeConsumidora WHERE id = 1001;

Implementação: Machine Learning na Energia Solar

1. Integração de Dados com IRIS

Extraímos dados essenciais de múltiplas tabelas para construção do dataset:

SELECT PSID, CHNNLID, TYPENAME, DEVICESN, DEVICETYPE, FACTORYNAME, STATUS FROM datafabric_solar_bd.EQUIPAMENTS;

2. Treinamento de Modelo de Manutenção Preditiva

Utilizando Python Embedded no IRIS para treinar um modelo de manutenção preditiva:

from sklearn.ensemble import RandomForestClassifier
from iris import irispy # Carregar dados
sql_query = "SELECT PSID, DEVSTATUS, ALARMCOUNT FROM datafabric_solar_bd.USINAS;"
data = irispy.sql(sql_query) # Treinar o modelo
model = RandomForestClassifier()
model.fit(data[['DEVSTATUS', 'ALARMCOUNT']], data['PSID'])

3. Previsão da Produção de Energia

Utilizando análise de séries temporais para prever a produção de energia diária:

from fbprophet import Prophet # Preparar dataset
df = irispy.sql("SELECT STARTTIMESTAMP, PRODDAYPLANT FROM datafabric_solar_bd.POINTMINUTEDATA;")
df.rename(columns={'STARTTIMESTAMP': 'ds', 'PRODDAYPLANT': 'y'}, inplace=True) # Treinar modelo de previsão
model = Prophet()
model.fit(df)
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)

4. Identificação de Áreas de Alta Irradiação Solar

A análise de dados geoespaciais permite identificar zonas com maior potencial de geração de energia solar, otimizando a alocação de recursos.

Conclusão

O IntegratedML facilita a implementação de machine learning no InterSystems IRIS, permitindo que modelos sejam treinados e aplicados diretamente via SQL. Além disso, o uso de técnicas de machine learning para manutenção preditiva e previsão de geração de energia pode melhorar a eficiência operacional das usinas solares.

Discussion (0)1
Log in or sign up to continue
Article
· Feb 6 3m read

IntegratedML Configuration and Application in InterSystems IRIS

Overview

 

With the help of SQL, you can build, train, and manage machine learning models directly in the database with InterSystems IRIS's robust IntegratedML tool. Using SQL examples that represent your data, we will go over IntegratedML configuration and how it is used in practical situations in this article.

 

IntegratedML Configuration

 

A ML configuration (“ML Configuration”) defines the machine learning provider that will perform the training, in addition to other necessary information. IntegratedML has a default configuration called %AutoML, already activated after installing InterSystems IRIS.

Creating ML Configuration

To create a new ML configuration, we can use the System Management Portal or SQL commands.

Creating ML Configuration via SQL:

CREATE ML CONFIGURATION MeuMLConfig PROVIDER AutoML USING {'verbosity': 1};

To set this configuration as default:

SET ML CONFIGURATION MeuMLConfig;

To view the training settings:

SELECT * FROM INFORMATION_SCHEMA.ML_TRAINING_RUNS;

IntegratedML Application

Creating a predictive model to estimate the amount of energy generated by a consumer unit:

CREATE MODEL PredicaoEnergia PREDICTING (quantidade_generada) FROM UnidadeConsumidora;

Training the model:

TRAIN MODEL PredicaoEnergia;

Making predictions:

SELECT quanto_generada, PREDICT(PredicaoEnergia) AS predicao FROM UnidadeConsumidora WHERE id = 1001;

Implementation: Machine Learning in Solar Energy

1. Data Integration with IRIS

We extracted essential data from multiple tables to build the dataset:

SELECT PSID, CHNNLID, TYPENAME, DEVICESN, DEVICETYPE, FACTORYNAME, STATUS FROM datafabric_solar_bd.EQUIPAMENTS;

2. Predictive Maintenance Model Training

Using Python Embedded in IRIS to train a predictive maintenance model:

from sklearn.ensemble import RandomForestClassifier

from iris import irispy

 

# Load data

sql_query = "SELECT PSID, DEVSTATUS, ALARMCOUNT FROM datafabric_solar_bd.USINAS;" data = irispy.sql(sql_query)

 

# Train the model

model = RandomForestClassifier()

model.fit(data[['DEVSTATUS', 'ALARMCOUNT']], data['PSID'])

3. Forecasting Energy Production

Using time series analysis to forecast daily energy production:

from fbprophet import Prophet

 

# Prepare dataset

df = irispy.sql("SELECT STARTTIMESTAMP, PRODDAYPLANT FROM datafabric_solar_bd.POINTMINUTEDATA;")

df.rename(columns={'STARTTIMESTAMP': 'ds', 'PRODDAYPLANT': 'y'}, inplace=True)

 

# Train forecasting model

model = Prophet()

model.fit(df)

future = model.make_future_dataframe(periods=30)

forecast = model.predict(future)

4. Identifying Areas of High Solar Irradiance

The analysis of geospatial data allows the identification of areas with the greatest potential for solar energy generation, optimizing resource allocation.

Conclusion

IntegratedML makes it easier to implement machine learning in InterSystems IRIS by allowing models to be trained and applied directly using SQL. Furthermore, using machine learning techniques for predictive maintenance and energy generation forecasting can help solar plants operate more efficiently

1 Comment
Discussion (1)1
Log in or sign up to continue