Hi Community,

We're pleased to invite you to join the upcoming InterSystems IRIS 2020.1 Tech Talk: Data Science, ML & Analytics on April 21st at 10:00 AM EDT!

In this first installment of InterSystems IRIS 2020.1 Tech Talks, we put the spotlight on data science, machine learning (ML), and analytics. InterSystems IntegratedMLTM brings automated machine learning to SQL developers. We'll show you how this technology supports feature engineering and chooses the most appropriate ML model for your data, all from the comfort of a SQL interface. We'll also talk about what's new in our open analytics offerings. Finally, we'll share some big news about InterSystems Reports, our "pixel-perfect" reporting option. See how you can now generate beautiful reports and export to PDF, Excel, or HTML.

3 2
1 338

Hi Community!

We are pleased to invite all the developers to the upcoming InterSystems AI Programming Contest Kick-Off Webinar! The topic of this webinar is dedicated to the InterSystems IRIS AI Programming Contest.

On this webinar, we will talk and demo how to use IntegratedML and PythonGateway to build AI solutions using InterSystems IRIS.

Date & Time: Monday, June 29 — 11:00 AM EDT

🗣 @Thomas Dyar, Product Specialist - Machine Learning, InterSystems
🗣 @Eduard Lebedyuk, Sales Engineer, InterSystems

2 2
0 470

Keywords: IRIS, IntegratedML, Machine Learning, Covid-19, Kaggle


Recently I noticed a Kaggle dataset for the prediction of whether a Covid-19 patient will be admitted to ICU. It is a spreadsheet of 1925 encounter records of 231 columns of vital signs and observations, with the last column of "ICU" being 1 for Yes or 0 for No. The task is to predict whether a patient will be admitted to ICU based on known data.

2 1
1 656

What is Distributed Artificial Intelligence (DAI)?

Attempts to find a “bullet-proof” definition have not produced result: it seems like the term is slightly “ahead of time”. Still, we can analyze semantically the term itself – deriving that distributed artificial intelligence is the same AI (see our effort to suggest an “applied” definition) though partitioned across several computers that are not clustered together (neither data-wise, nor via applications, not by providing access to particular computers in principle). I.e., ideally, distributed artificial intelligence should be arranged in such a way that none of the computers participating in that “distribution” have direct access to data nor applications of another computer: the only alternative becomes transmission of data samples and executable scripts via “transparent” messaging. Any deviations from that ideal should lead to an advent of “partially distributed artificial intelligence” – an example being distributed data with a central application server. Or its inverse. One way or the other, we obtain as a result a set of “federated” models (i.e., either models trained each on their own data sources, or each trained by their own algorithms, or “both at once”).

2 0
1 444
· Sep 16, 2022
Several models, such as DALL-E, Midjourney, and StableDiffusion, became available recently. All these models generate digital images from natural language descriptions. The most interesting one, in my opinion, is StableDiffusion which is open source - released barely a few weeks ago. There's now an entire community trying to leverage it for various use cases.
2 0
0 690

Hi Everyone!

Very soon, almost every product and application will include artificial intelligence (AI).

On the afternoon of Wednesday, October 3, at the Global Summit 2018 in San Antonio we’re pulling together experts from InterSystems and from the front lines of the AI industry to discuss the current and future state-of-the-art for AI solutions.

Learn more about our Post-Summit Symposium: Artificial Intelligence and Machine Learning.

2 4
0 505

A few months ago, I read this interesting article from MIT Technology Review, explaing how COVID-19 pandemic are issuing challenges to IT teams worldwide regarding their machine learning (ML) systems.

Such article inspire me to think about how to deal with performance issues after a ML model was deployed.

2 2
0 351
· Apr 8, 2019 4m read
Should we use computers?

The titular question was quite relevant and often discussed some thirty years ago. The thought went: “Sure, there are industries where computers are the norm, but in my industry we got just fine so far, the benefits are questionable, problems innumerable and unsolved. Can we continue as before or should we embrace this new technology?”

Today, everyone asks the same question but about Machine Learning and Artificial Intelligence. The doubts are the same – lack of expertise, lack of known path, perceived irrelevancy to the industry.

Yet, as before, the correct, even the only possible answer is a resounding yes. Read on to find out why.

2 1
1 293
· Sep 12, 2019
Python Gateway 0.8 release

I'm happy to announce the latest Python Gateway release.

This is not an InterSystems product, it is community supported open source project.

Download new release from GitHub.

Now for the new features.

Fast transfer. Pass globals, classes and tables from InterSystems IRIS to Python with ease and speed (10x faster than old QueryExecute). Documentation.

2 8
0 427

With the release of InterSystems IRIS, we're also making available a nifty bit of software that allows you to get the best out of your InterSystems IRIS cluster when working with Apache Spark for data processing, machine learning and other data-heavy fun. Let's take a closer look at how we're making your life as a Data Scientist easier, as you're probably already facing tough big data challenges already, just from the influx of job offers in your inbox!

2 2
0 1,231