
Using Regular Expressions in
InterSystems Caché

Michael Brösdorf, July 2016

Contents

1. About this document ... 1

2. Some history (and some trivia) ... 2

3. Regex 101 ... 3

3.1. Components of regular expressions ... 3

3.1.1. Regex meta characters ... 3

3.1.2. Literals ... 3

3.1.3. Anchors ... 3

3.1.4. Quantifiers... 4

3.1.5. Character classes (ranges) .. 4

3.1.6. Groups ... 5

3.1.7. Alternations ... 5

3.1.8. Back references ... 5

3.1.9. Rules of precedence ... 5

3.2. Some theory ... 6

3.3. Engines ... 6

4. RegEx and Caché ... 8

4.4. $match() and $locate() .. 8

4.5. %Regex.Matcher .. 8

4.5.1. Capture buffers ... 9

4.5.2. Replace ...10

4.5.3. OperationLimit ...10

4.6. Real world example: migration from Perl to Caché ..11

5. Reference information ...12

5.7. General information ...12

5.8. Caché online documentation ...12

5.9. ICU ...12

5.10. Tools ..13

Using Regular Expressions in InterSystems Caché Page 1

1. About this document

In this document, I would like to give a quick introduction into regular expressions and how you can

use them in InterSystems Caché. The information provided herein is based on various sources, most

notably the book “Mastering Regular Expressions” by Jeffrey Friedl and of course the Caché online

documentation.

This document is not intended to discuss all the possibilities and details of regular expressions. Please

refer to the information sources listed in chapter 5 if you would like to learn more.

Typographical Conventions

Text processing using patterns can sometimes become complex. When dealing with regular

expressions, we typically have several kinds of entities: the text we are searching for patterns, the

pattern itself (the regular expression) and the matches (the parts of the text that match the pattern).

To make it easy to distinguish between these entities, the following conventions are used throughout

this document:

Text samples are printed in a monospace typeface on separate, indented lines, without additional

quotes:

This is a "text string" in which we want to find "something".

Unless unambiguous, regular expressions within the text body are visualized with a gray background

such as in this example: \".*?\".

Matches are highlighted in different colors when needed:

This is a "text string" in which we want to find "something".

Sample code is printed in a monospace typeface:

set t="This is a ""text string"" in which we want to find ""something""."

set r="\"".*?\"""

w $locate(t,r,,,tMatch)

Using Regular Expressions in InterSystems Caché Page 2

2. Some history (and some trivia)

In the early 1940s, neuro-physiologists developed models for the human nervous system. Some years

later, a mathematician described these models with an algebra he called “regular sets”. The notation

for this algebra was named “regular expressions”.

In 1965, regular expressions are for the first time mentioned in the context of computers. With qed, an

editor that was part of the UNIX operating system, regular expressions start to spread. Later versions

of that editor provide a command sequence g/regular expression/p (global, regular expression, print)

that searches for matches of the regular expression in all text lines and outputs the results. This

command sequence eventually became the stand-alone UNIX command line program “grep”.

Today, various implementations of regular expressions (RegEx) exist for many programming

languages (see section 3.3).

Using Regular Expressions in InterSystems Caché Page 3

3. Regex 101

Just like Caché pattern matching, regular expressions can be used to identify patterns in text data –

only with a much higher expressive power. The following sections outline the components of regular

expressions, their evaluation and some of the available engines, details of how to use this are then

described in chapter 4.

3.1. Components of regular expressions

3.1.1. Regex meta characters

The following characters have a special meaning in regular expressions.

. * + ? () [] \ ^ $ |

If you need to use them as literals, you need to escape it using the backslash. You can also explicitly

specify literal sequences using \Q <literal sequence> \E.

3.1.2. Literals

Normal text and escaped characters are treated as literals, e.g.:

 abc abc

 \f form feed

 \n line feed

 \r carriage return

 \t tab You can also specify characters using octal or hexadecimal notation:

 Octal: \0 + three digits (e.g. \0101)

 The regex engine used in Caché (ICU) supports octal numbers up to \0377 (255 in

 decimal system). When you migrate regular expressions from another engine

 make sure you understand how it handles octal numbers.

 Hex: \x + two digits (e.g. \x41)

 The ICU library does provide more options of handling hex numbers, please

 refer to the ICU documentation (links can be found in section 5.8)

3.1.3. Anchors

With anchors, you match positions in your text/string, e.g.:

 \A Start of string

 \Z End of string

 ^ start of text or line

 $ end of text or line

 \b Word boundary

 \B Not word boundary

 \< Start of word

 \> End of word

Using Regular Expressions in InterSystems Caché Page 4

Some RegEx engines behave differently, for instance by the definition of what exactly constitutes a

word and which characters are considered word delimiters.

3.1.4. Quantifiers

With quantifiers, you can specify how often the preceding element may occur to be a match:

 {x} exactly x occurrences

 {x,y} minimum x, maximum y occurrences

 * 0 or more; equivalent to {0,}

 + 1 or more; equivalent to {1,}

 ? 0 or 1

Greediness

Quantifiers are “greedy”, they grab as many characters as possible. Suppose we have the following

text string and want to find text in quotes:

This is "a text" with "four quotes".

Because of the greedy nature of the selectors, the regular expression \".*\" would find too much text:

This is "a text" with "four quotes".

In this example, the regular expression .* tries to capture as many characters as possible that are

between a pair of quotes. However, because the dot selector (.) does also match quotes we do not

get the result we want.

With some regex engines (including the one used by Caché) you can control the greediness of the

quantifiers by adding a question mark to it. So the regular expression \".*?\" now matches the two

parts of the text that is in quotes - exactly what we are looking for:

This is "a text" with "four quotes".

3.1.5. Character classes (ranges)

Square brackets are used to specify ranges or sets of characters, e.g. [a-zA-Z0-9] or [abcd] – in regex

speech this is referred to as a character class.

A range matches single characters, so the order of characters within the range definition is irrelevant –

[dbac] returns the same matches as [abcd].

To exclude a range of characters simply put ^ in front of the range definition (within the square

brackets!): [^abc] matches anything except a, b or c.

Some regex engines do provide pre-defined character classes (POSIX), e.g.:

 [:alnum:] [a-zA-z0-9]

 [:alpha:] [a-zA-Z]

 [:blank:] [\t]

 …

Using Regular Expressions in InterSystems Caché Page 5

3.1.6. Groups

Parts of a regular expression can be grouped using a pairs of parenthesis. This can be useful to apply

quantifiers to a group of selectors as well as for referencing the groups from both within the same

regex (back references) as well as from the Caché Object Script code calling the regular expression

(capture buffers). Groups can be nested.

The following regex matches strings consisting of a three-digit number, followed by a dash, followed

by 3 pairs of an uppercase letter and a digit, followed by a dash, followed by the same three-digit

number as in the first part:

([0-9]{3})-([A-Z][[0-9]){3}-\1

This example shows how you can use back references (see below) to match not only structure but also

content: the back reference (purple) tells the engine to look for the same three-digit number at the

end as at the beginning (yellow). It also demonstrates how to apply a quantifier to more complex

structures (green).

The regex from above would match on the following string:

123-D1E2F3-123

It would not match on these:

 123-D1E2F3-456 (the last three-digits are different from the first three)

 123-1DE2F3-123 (the middle part does not consist of three letter/digit-pairs)

123-D1E2-123 (the middle part contains only two letter/digit-pairs)

Groups will also populate the so-called capture buffers (see section 0). This is a very powerful feature

that allows you to match and extract information at the same time!

3.1.7. Alternations

Use the pipe character to specify alternations, e.g. skyfall|done. This allows for matching more

complex expressions as the character classes described in section 3.1.5.

3.1.8. Back references

Back references allow you to refer to previously defined groups (selectors in parenthesis). The

following example shows a regular expression that matches three consecutive characters that have to

be equal:

([a-zA-Z])\1\1

Back references are specified by \x, whereas x represents the x-th bracketed expression.

3.1.9. Rules of precedence

1. [] before ()

2. , + and ? before sequence  ab equates to a(b*), not (ab)*

3. Sequence before alternation  ab|c equates to (ab)|c, not a(b|c)

Using Regular Expressions in InterSystems Caché Page 6

3.2. Some theory

The evaluation of regular expressions is usually implemented with one of the following two methods

(the descriptions are simplified, please refer to the literature mentioned in section 5 for in-depth

discussions):

1. Text-driven (DFA – Deterministic Finite Automaton)

The engine steps through the input text character by character and tries to match what it has

so far. When it actually reaches the end of the input text, it declares success.

2. Regex-driven (NFA – Non-deterministic Finite Automaton)

The engine steps through the regular expression token by token and tries to apply it to the

text. When it actually reaches (and matches) the last token, it declares success.

Method 1 is deterministic, execution time depends on the length of the input text only. The order of

the selectors in the regular expression does not impact execution time.

Method 2 is non-deterministic, the engine plays through all combinations of the selectors in the

regular expression until it finds a match or runs into an error. Hence, this method is particularly slow

when it does not find a match (because it has to play through all possible combinations). The order of

the selectors does have an impact on execution time. However, this method allows for backtracking

and capture buffers.

3.3. Engines

There are many different regex engines available, some are a built-in part of programming languages

or operating systems, others being libraries that can be used almost anywhere. Here are some regex

engines, grouped by evaluation method:

- DFA: grep, awk, lex

- NFA: Perl, Tcl, Python, Emacs, sed, vi, ICU

The table on the next page represent a comparison of available regex features in various

programming languages and libraries.

Using Regular Expressions in InterSystems Caché Page 7

Comparison of various RegEx engines and their features

"+
"

qu
an

tif
ie

r

N
eg

at
ed

 c
ha

ra
ct

er

cl
as

se
s

N
on

-g
re

ed
y

qu
an

tif
ie

rs

Sh
y

gr
ou

ps

Re
cu

rs
io

n

Lo
ok

-a
he

ad

Lo
ok

-b
eh

in
d

Ba
ck

re
fe

re
nc

es

>9
 in

de
xa

bl
e

ca
pt

ur
es

D
ire

ct
iv

es

Co
nd

iti
on

al
s

A
to

m
ic

 g
ro

up
s

N
am

ed
 c

ap
tu

re

Co
m

m
en

ts

Em
be

dd
ed

 c
od

e

U
ni

co
de

 p
ro

pe
rt

y

su
pp

or
t

Ba
la

nc
in

g

gr
ou

ps

V
ar

ia
bl

e-
le

ng
th

lo
ok

-b
eh

in
ds

.NET Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Some Yes Yes

Boost.Regex Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Some No No

Boost.Xpressive Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes No No No No

CL-PPCRE Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Some No No

GLib/GRegex Yes ? Yes ? No ? ? ? ? Yes Yes Yes Yes Yes No Some No No

GNU grep Yes Yes Yes Yes No Yes Yes Yes ? Yes Yes ? Yes Yes No No No No

Haskell Yes Yes Yes Yes No Yes Yes Yes Yes ? ? ? ? ? No No No No

ICU Regex Yes Yes Yes Yes No Yes Yes Yes Yes Yes No Yes No Yes No Yes No No

Java Yes Yes Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes No Some No No

JavaScript Yes Yes Yes Yes No Yes No Yes Yes No No No No No No No No No

JGsoft Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Some No Yes

Lua Yes Yes Yes No No No No Yes No No No No No No No No No No

OCaml Yes Yes No No No No No Yes No No No No No No No No No No

PCRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No

Perl Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No

PHP Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No

Python Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes No Yes Yes No No No No

Qt/QRegExp Yes Yes Yes Yes No Yes No Yes Yes No No No No No No No No No

R Yes Yes Yes Yes No Yes Yes Yes Yes ? ? ? ? ? ? ? ? ?

RE2 Yes Yes Yes Yes No No No No Yes Yes No ? Yes No No Some No No

RGX Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes No No

Ruby Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Some No No

Tcl Yes Yes Yes Yes No Yes Yes Yes Yes Yes No Yes No Yes No Yes No No

TRE Yes Yes Yes Yes No No No Yes No Yes No No No Yes No ? No No

Vim Yes Yes Yes Yes No Yes Yes Yes No Yes No Yes No No No No No Yes

XRegExp Yes Yes Yes Yes No Yes No Yes Yes Some No No Yes Yes No Yes No No

(source: https://en.wikipedia.org/wiki/Comparison_of_regular_expression_engines)

Using Regular Expressions in InterSystems Caché Page 8

4. RegEx and Caché

InterSystems Caché uses the ICU library for regular expressions, the Caché online documentation

describes many of its features. Please refer to the online documentation of the ICU library for full

details (including things like back references etc.) – links to ICU can be found in section 5.8. The

following sections are intended to give you a quick introduction on how to use it.

4.4. $match() and $locate()

In Caché ObjectScript (COS), the two functions $match() and $locate() provide direct access to most

of the regex features provided by the ICU library.

$match(String, Regex) searches the input string for the specified Regex pattern. When it finds a match

it returns 1, otherwise it returns 0.

Examples:

 w $match("baaacd",".*(a)\1\1.*")  1

 w $match("bbaacd",".*(a)\1\1.*")  0

$locate(String,Regex,Start,End,Value) searches the input string for specified regex pattern – just like

$match(). However, $locate() gives you more control and it returns more information.

In Start, you can tell $locate at which position it should start searching for patterns in the input

string.

When $locate() finds a match, it returns the position of the first character of the match and sets End to

the next character position after the match. The content of the match is returned in Value.

If $locate() does not find a match it returns 0 and does not touch the contents of End and Value (if

specified).

End and Value are passed as references, so be careful if you use it repeatedly (e.g. in loops).

Example:

 w $locate("abcdexyz",".d.",1,e,x) returns 3, e is set to 6, x is set to "cde"

$locate() performs the pattern matching and can return the content of the first match at the same

time. If the content of all matches needs to be extracted you can call $locate() repeatedly in a loop or

you can use the methods provided by %Regex.Matcher (see next section).

4.5. %Regex.Matcher

%Regex.Matcher provides access to the regex functionality of the ICU library, just like $match() and

$locate(). However, %Regex.Matcher also provides access to some advanced features that make more

complex tasks very easy to use. The following sections will revisit capture buffers, look at the

possibility to replace strings with regular expressions and ways to control the runtime behavior.

Using Regular Expressions in InterSystems Caché Page 9

4.5.1. Capture buffers

As we have already seen in the sections about groups, back references and $locate(), regular

expressions allow you to simultaneously search for patterns in text and return the matched content.

This works by putting the parts of the pattern you would like to extract in a pair of parenthesis

(grouping). Upon successful matching, the capture buffers contain the contents of all matched

groups. Note that this is slightly different from what $locate() provides with its value-parameter:

$locate() returns the content of the whole match itself while capture buffers give you access to parts

of the match (the groups).

To use it, you create an object of the class %Regex.Matcher and pass it the regular expression and the

input string. Then you can call the one of the methods provided by %Regex.Matcher to perform the

actual work.

Example 1 (simple groups):

set m=##class(%Regex.Matcher).%New("(a|b).*(de)", "abcdeabcde")

w m.Locate()  1

w m.Group(1)  a

w m.Group(2)  de

Example 2 (nested groups and back reference):

set m=##class(%Regex.Matcher).%New("((a|b).*?(de))(\1)", "abcdeabcde")

w m.Match()  1

w m.GroupCount  4

w m.Group(1)  abcde

w m.Group(2)  a

w m.Group(3)  de

w m.Group(4)  abcde

(note the order of the nested groups – because the opening parenthesis marks the beginning

of a group, inner groups have a higher index number than the outer ones)

As mentioned before, capture buffers are a very powerful feature as they allow you to match patterns

and extract the matched content at the same time. Without regular expressions, you would have to

find your matches in step one (e.g. using the pattern match operator) and extract the matched

content (or parts of it) based on some criteria in step two.

If you need to group parts of your pattern (for instance to apply a quantifier to that part) but you don’t

want to populate a capture buffer with content of the matched part, you can define the group as

“non-capturing” or “shy” by putting a question mark, followed by a colon in front of the group as in

the example 3 below.

Using Regular Expressions in InterSystems Caché Page 10

Example 3 (shy group):

set m=##class(%Regex.Matcher).%New("((a|b).*?(?:de))(\1)","abcdeabcde")

w m.Match()  1

w m.Group(1)  abcde

w m.Group(2)  a

w m.Group(3)  abcde

w m.Group(4)  <REGULAR EXPRESSION>zGroupGet+3^%Regex.Matcher.1

4.5.2. Replace

%Regex.Matcher does also provide methods to replace the contents of matches right away:

ReplaceAll() and ReplaceFirst():

set m=##class(%Regex.Matcher).%New(".c.","abcdeabcde")

w m.ReplaceAll("xxxx")  axxxxeaxxxxe

w m.ReplaceFirst("xxxx")  axxxxeabcde

You can also reference groups in your replacement strings. If we add a group to the pattern from the

previous example, we can reference its content by including $1 in the replacement string:

set m=##class(%Regex.Matcher).%New(".(c).","abcdeabcde")

w m.ReplaceFirst("xx$1xx")  axxcxxeabcde

Use $0 to include the full content of the match in the replacement string:

w m.ReplaceFirst("xx$0xx")  axxbcdxxeabcde

4.5.3. OperationLimit

In section 3.2 we learned about the two methods of evaluating a regular expression (DFA and NFA).

The regex engine used in Caché is a nondeterministic finite automaton (NFA). Therefore, the duration

to evaluate various regular expressions on a given input string may vary. 1

You can use the property OperationLimit of a %Regex.Matcher object to limit the number of execution

units (so-called clusters). The exact duration to execute a cluster depends on your environment.

Typically a duration for the execution of a cluster is very few milliseconds. By default, the

OperationLimit is set to 0 (no limit).

1 See section “Performance Tips” at http://userguide.icu-project.org/strings/regexp

Using Regular Expressions in InterSystems Caché Page 11

4.6. Real world example: migration from Perl to Caché

This section describes the regex-related part of a migration from Perl to Caché. The Perl script actually

consisted of dozens more or less complex regular expressions which were used to both match and

extract content.

If there was no regex functionality available in Caché, the migration project would have turned into a

major effort. However, regex functionality is available in Caché, and the regular expressions from the

Perl script could be used in Caché almost without any changes.

Here is a part from the Perl script:

The only change to the regular expressions required to move it from Perl to Caché was the /i-modifier

(making the regex case insensitive) – this had to be moved from the end of the regex to the beginning.

In Perl, contents of the capture buffers are copied into special variables ($1 and $2 in the Perl code

above). Almost all of the regular expression in the Perl project used this mechanism. To resemble this,

a simple wrapper method was written in Caché Object Script. It uses %Regex.Matcher to evaluate a

regular expression against a text string and returns the contents of the capture buffer as a list ($lb()).

The resulting Caché Object Script code looks like this:

if ..RegexMatch(

 tVCSFullName,

 "(?i)[\\\/]([^\\^\/]+)[\\\/]ProjectDB[\\\/](.+)[\\\/]archives[\\\/]",

 .tCaptureBufferList)

 {

 set tDomainPrefix=$zcvt($lg(tCaptureBufferList,1), "U")

 set tDomain=$zcvt($lg(tCaptureBufferList,2), "U")

 }

…

Classmethod RegexMatch(pString as %String, pRegex as %String, Output pCaptureBuffer="") {

 #Dim tRetVal as %Boolean=0

 set m=##class(%Regex.Matcher).%New(pRegex,pString)

 while m.Locate() {

 set tRetVal=1

 for i=1:1:m.GroupCount {

 set pCaptureBuffer=pCaptureBuffer_$lb(m.Group(i))

 }

 }

 quit tRetVal
}

Using Regular Expressions in InterSystems Caché Page 12

5. Reference information

5.7. General information

General information and tutorials:

 http://www.regular-expressions.info/engine.html

Tutorials and examples:

 http://www.sitepoint.com/demystifying-regex-with-practical-examples/

Comparison of several regex engines:

 https://en.wikipedia.org/wiki/Comparison_of_regular_expression_engines

Cheat sheet:

 https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/pdf/

Book:

 Jeffrey E. F. Friedl: “Mastering Regular Expressions” (see http://regex.info/book.html)

5.8. Caché online documentation

 Overview about the usage of regular expressions in Caché:

http://localhost:57772/csp/docbook/DocBook.UI.Page.cls?KEY=GCOS_regexp

 Documentation of $match():

http://localhost:57772/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_fmatch

 Documentation of $locate():

http://localhost:57772/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_flocate

 Class reference of %Regex.Matcher:

http://localhost:57772/csp/documatic/%25CSP.Documatic.cls?APP=1&LIBRARY=%25SYS&CLA

SSNAME=%25Regex.Matcher

5.9. ICU

As mentioned above, InterSystems Caché uses the ICU engine. Comprehensive documentation is

available online:

 http://userguide.icu-project.org/strings/regexp

 http://userguide.icu-project.org/strings/regexp#TOC-Regular-Expression-Metacharacters

 http://userguide.icu-project.org/strings/regexp#TOC-Regular-Expression-Operators

 http://userguide.icu-project.org/strings/regexp#TOC-Replacement-Text

 http://userguide.icu-project.org/strings/regexp#TOC-Flag-Options

http://www.regular-expressions.info/engine.html
http://www.sitepoint.com/demystifying-regex-with-practical-examples/
https://en.wikipedia.org/wiki/Comparison_of_regular_expression_engines
https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/pdf/
http://regex.info/book.html
http://localhost:57772/csp/docbook/DocBook.UI.Page.cls?KEY=GCOS_regexp
http://localhost:57772/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_fmatch
http://localhost:57772/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_flocate
http://localhost:57772/csp/documatic/%25CSP.Documatic.cls?APP=1&LIBRARY=%25SYS&CLASSNAME=%25Regex.Matcher
http://localhost:57772/csp/documatic/%25CSP.Documatic.cls?APP=1&LIBRARY=%25SYS&CLASSNAME=%25Regex.Matcher
http://userguide.icu-project.org/strings/regexp
http://userguide.icu-project.org/strings/regexp#TOC-Regular-Expression-Metacharacters
http://userguide.icu-project.org/strings/regexp#TOC-Regular-Expression-Operators
http://userguide.icu-project.org/strings/regexp#TOC-Replacement-Text
http://userguide.icu-project.org/strings/regexp#TOC-Flag-Options

Using Regular Expressions in InterSystems Caché Page 13

5.10. Tools

There are many tools out there that support developers in creating regular expressions – some of

them free, others come with a commercial license. My personal choice is RegexBuddy

(http://www.regexbuddy.com/) – it provides a comprehensive set of interactive and visual features to

create and test regular expressions in different flavors.

http://www.regexbuddy.com/

