
	

	

Lumière	
A	Smart	Review	Analysis	Engine	

Ruchi	Asthana	
Nathaniel	Brennan	
Zhe	Wang	

Purpose
A	rapid	increase	in	Internet	users	along	with	the	
growing	power	of	online	reviews	has	given	birth	
to	fields	like	opinion	mining	and	sentiment	
analysis.	Today,	most	people	seek	positive	and	
negative	opinions	of	a	product	before	making	a	
purchase.	Customers	find	information	from	
reviews	extremely	useful	because	they	want	to	
know	what	people	are	saying	about	the	product	
they	want	to	buy.	Information	from	reviews	is	
also	crucial	to	marketing	teams,	who	are	
constantly	seeking	customer	feedback	to	
improve	the	quality	of	their	products.	While	it	is	
universal	that	people	want	feedback	about	
online	products,	they	are	often	not	willing	to	
read	through	all	the	hundreds	or	even	
thousands	of	customer	reviews	that	are	
available.	Therefore	our	tool	extracts	the	
information	both	vendors	and	customers	need	
so	they	can	make	the	best	decision	without	
having	to	read	through	any	reviews.	Lumière	
does	this	by	going	through	all	product	reviews	
and	extracting:	(1)	popular	features	being	
commented	on,	(2)	sentiment	that	identifies	

how	people	feel	about	popular	features,	and	(3)	
a	representative	summary	that	gives	insight	
into	what	people	are	saying	about	popular	
features.	Our	platform	is	composed	of	two	
interfaces:	a	buyer	interface	and	a	seller	
interface,	which	we	have	shown	in	Figure	1.

Buyer Interface
The	 buyer	 interface	 is	 a	 smart	 search	 engine	
that	takes	in	a	product	type	and	the	features	of	
highest	 importance	 to	 the	 buyer.	 It	 outputs	
products	 that	 are	 ranked	 in	 order	 of	 how	
strongly	they	perform	on	the	buyers’	prioritized	
features.		

Seller Interface
The	seller	interface	provides	a	space	for	
marketing	teams	to	find	information	relevant	to	
their	products’	performance.	The	seller	
interface	does	this	by	displaying:	(1)	popular	
features,	(2)	sentiment	associated	with	each	
feature	(from	reviews),	(3)	feature	specific	
summaries,	and	(4)	feature	based	comparison	
with	other	products	in	the	category.	The	seller	

Figure	1.	Displays	the	buyer	and	seller	interfaces.	

interface	also	includes	demographic	
information	about	the	gender	of	the	buyers	and	
their	location	across	the	world,	which	can	be	
helpful	for	targeted	marketing	(Appendix).			
	

Data Loading
For	 our	 dataset,	 we	 used	 the	 Amazon	 review	
data	 from	 Computer	 Science	 Professor	 Julian	
McAuley	 at	 University	 of	 California	 San	 Diego	
(UCSD).	The	dataset	contains	information	for	82	
million	 Amazon	 reviews,	 including	 the	 full	 text	
of	 the	 review.	 It	 also	 contains	 ancillary	 data	
points	 such	 as	 the	 reviewer	 username,	 the	
score	 from	 one	 to	 five	 stars,	 and	 product	
information	 such	 as	 title,	 description,	 price,	
brand,	 and	 categories.	 This	 data	 is	 provided	 in	
document	 format.	 DocDB	 is	 a	 new	 feature	 of	
the	 InterSystems	 IRIS	 Data	 Platform	 which	
allows	 for	 the	 easy	 storage	 and	 querying	 of	
document	 data.	 Using	 this	 new	 tool,	 we	 were	
able	 to	 seamlessly	 insert	 the	 raw	 review	 data	
and	 query	 the	 fields	 we	 needed,	 such	 as	 the	
review	text,	 rating,	 reviewer,	and	product	 info.	
After	our	 raw	review	data	was	 loaded	 for	easy	
accessibility,	 we	 faced	 the	 challenge	 of	
designing	a	database	 that	could	store	 that	 raw	
data	 alongside	 the	 results	 of	 our	 natural	
language	analysis.	We	needed	a	 simple	way	 to	
create	and	insert	new	data	points	and	to	handle	
one-to-many	 and	 many-to-many	 relationships.	
For	 this	we	employed	Caché	Object	 Script.	We	
had	 several	 types	 of	 data	 that	 could	 easily	 be	
translated	 into	 objects.	 Our	 dataset	 revolves	
around	 reviews,	 reviewers,	 products,	 and	
product	categories.	We	created	a	class	for	each	

of	these	with	the	fields	we	could	extract	directly	
from	the	raw	data	and	the	new	properties	from	
our	 analysis.	 Our	 new	 data	 includes	 extracted	
product	 features,	 a	 sentiment	 score	 for	 each	
feature,	 and	 a	 summary	 for	 each	 feature.	We	
did	 this	 analysis	 on	 a	 per-review,	 per-product,	
and	 per-category	 basis.	 Therefore,	we	 decided	
to	 make	 serial	 objects	 to	 contain	 this	 feature	
information	 and	 put	 them	 in	 lists	 within	 our	
review,	product,	and	category	objects.	

Feature Extraction
The	 goal	 of	 feature	 extraction	 was	 to	 identify	
the	 product	 features	 being	 commented	 on.	 In	
order	 to	 do	 that	 we	 took	 customer	 reviews	
from	 all	 the	 products	 in	 a	 particular	 category.	
The	output	of	our	pipeline	was	a	list	of	the	most	
talked	about	features	in	the	given	category.	The	
review	 text	 contains	 misspelled	 words	 and	
punctuation	 errors	 that	 may	 compromise	 the	
performance	of	our	natural	language	processing	
algorithms.	 Thus,	 our	 first	 step	was	 to	use	 the	
Ginger	API	to	correct	grammar	and	punctuation	
mistakes	 in	 the	 customer	 reviews.	 The	 ideal	
review	 dataset	 for	 our	 analysis	 are	 opinion	
sentences	 about	 product	 features.	 However,	
the	 Amazon	 reviews	 also	 contain	 objective	
sentences	 that	 describe	 why	 and	 when	 a	
product	 was	 bought.	 Thus	 we	 developed	 a	
Naive	 Bayes	 classifier	 to	 filter	 out	 these	
objective	 sentences.	 We	 used	 subjectivity	
dataset	 v1.0	 introduced	 in	 Pang/Lee	 ACL	 2004	
as	 the	 training	 set,	 and	 unigrams	 as	 features.	
We	 turned	 all	 the	 sentences	 into	 a	 sparse	
matrix	in	which	a	value	of	1	represented	that	a	

certain	word	existed	in	a	certain	sentence,	and	
then	 fed	 it	 to	 the	classifier.	Next	we	used	part	
of	speech	tagging	provided	by	Natural	Language	
Toolkit	 for	Python	to	obtain	the	most	 frequent	
unigrams	 and	 bigrams.	 We	 tested	 extracting	
different	 types	 of	 unigrams	 and	 bigrams	 and	
found	 that	 unigrams	 that	 are	 nouns	 and	
bigrams	 that	 consist	 of	 two	 consecutive	nouns	
or	 one	 adjective	 followed	 by	 one	 noun	
performed	 the	 best.	 	 When	 we	 counted	 the	
unigram	 and	 bigrams,	 we	 stemmed	 them	 so	
that	“noise	cancelling”	and	“noise	cancellation”	
both	 counted	 toward	 the	 bigram	 “noise	
cancel”.	 Then	 if	 “noise	 cancellation”	 occurred	
most	 often	 among	all	 the	 forms	of	 the	bigram	
“noise	 cancel”,	we	 output	 “noise	 cancellation”	
as	the	feature.	
	

Feature Pruning	
Feature	 pruning	 was	 conducted	 to	 remove	
meaningless	entities.	We	filtered	out	the	brand	
names	(attribute	of	dataset),	stop	words	and		
redundant	 features.	 For	 example,	we	 removed	

“batterylife”,	 and	 added	 to	 the	 count	 for	
“battery	 life”.	 All	 of	 our	 natural	 language	
processing	 algorithms	 were	 written	 in	 Python.	
We	took	advantage	of	the	Spark	Connector	and	
PySpark	to	execute	SQL	statements	in	Python,			
and	got	the	data	we	needed	from	InterSystems	
IRIS	in	an	efficient	manner.	We	also	used		
multiprocessing	 to	 utilize	 the	 16	 cores	 of	 our	
cloud	 instance,	 and	 improve	 the	 runtime	 of	
these	algorithms.	Figure	2	gives	an	example	of	
part	 of	 speech	 tagging	 and	 the	 results	 of	
feature	 extraction	 conducted	 on	 customer	
reviews	from	the	laptop	category.	
	

Sentiment Analysis
By	themselves,	features	are	not	very	useful.	The	
goal	 of	 our	 sentiment	 analysis	 is	 to	 provide	 a	
numeric	 score	 for	 each	 product	 feature	
indicating	 whether	 people	 talked	 about	 it	
positively	 or	 negatively	 in	 reviews.	 To	
determine	 how	 people	 feel	 about	 a	 given	
feature,	 we	 examined	 the	 words	 they	 use	 to	
describe	 this	 feature	 (descriptors).	 To	 extract	

Figure	2.	Displays	the	goals	of	feature	extraction,	an	example	of	part	of	speech	tagging,	
and	the	output	of	feature	extraction	and	feature	pruning	on	a	set	of	laptop	reviews.	

descriptors,	 we	 used	 a	 natural	 language	
processing	 technique	 called	 dependency	
parsing.	 Dependency	 parsing	 transforms	 a	
sentence	 into	 a	 tree	 of	 grammatical	 relations,	
such	as	nsubj	(nominal	subject),	nmod	(nominal	
modifier),	 and	 amod	 (adjectival	modifier).	 This	
allowed	us	to	reasonably	guess	what	words	are	
being	used	 to	modify	or	describe	other	words.	
We	 manually	 curated	 a	 custom	 set	 of	
dependencies	 that	usually	 indicate	 this	 type	of	
relation.	When	 a	word	 is	 related	 to	 a	 product	
feature	 (that	 we	 already	 had	 extracted	 in	 the	
previous	 step)	 by	 one	 of	 our	 selected	
dependencies,	we	marked	the	other	word	as	a	
descriptor.	We	also	used	dependency	parsing	to	
extract	words	that	modify	the	descriptors,	such	
as	 negations	 and	 adverbs.	 This	 allowed	 us	 to	
more	 accurately	 determine	 the	 sentiment	 of	 a	
particular	sentence	with	respect	to	the	feature	
of	interest.	Now	that	we	had	all	the	descriptors	
of	a	feature,	we	could	analyze	these	descriptors	
with	 SentiWordNet,	 a	 tool	 that	 provides	 a	

sentiment	 score	 for	 every	 possible	 use	 of	 a	
word	 in	English	text.	Taking	a	weighted	sum	of	
these	scores	provided	an	accurate	estimate	for	
the	sentiment	of	 that	descriptor,	before	 taking	
into	 account	 negations.	 If	 a	 descriptor	 was	
negated,	 then	we	 inverted	 its	 score.	The	 score	
of	a	feature	is	calculated	by	taking	the	average	
of	 the	 scores	 of	 all	 the	 descriptors	 of	 the	
feature,	as	displayed	in	Figure	3.	
	

Feature Specific Summaries
Feature	specific	summaries	help	give	insight	on	
what	 people	 were	 saying	 about	 a	 particular	
feature	 of	 a	 product.	 These	 summaries	 are	
included	 in	 the	 seller	 interface	 to	 help	
marketing	 teams	know	what	 to	 improve	about	
a	given	feature.	In	order	to	get	the	summaries,	
we	 first	 isolated	 all	 product	 reviews	 (PR)	 that	
mentioned	 feature	 (F).	 Then,	 we	 used	
InterSystems	 IRIS	 Natural	 Language	 Processing	
to	get	a	summary	for	each	review	that	is	related	
to	what	 people	 are	 saying	 about	 that	 feature.	

Figure	3.	Displays	the	goals	of	sentiment	analysis,	an	example	of	part	of	dependency	parsing,	
and	output	from	sentiment	analysis	on	features	extracted	from	a	set	of	laptop	reviews.	

This	 is	 called	 the	 feature	 summary	 (FS).	 Once	
we	had	feature	summaries	for	each	review,	we	
used	 the	 REST	 API	 to	 collect	 them.	 We	 then	
implemented	a	sentence	similarity	algorithm	in	
Python	to	find	the	most	representative	review.		
Our	 sentence	 similarity	 algorithm	 takes	 two	
sentence	and	gives	a	numerical	representation		
from	0	to	1	(0	=	not	related,	1	=	highly	related)	
of	 how	 similar	 they	 are.	 For	 each	 feature	
summary,	 it	 added	 all	 similarity	 scores	 of	
related	 sentences	 and	 then	 ultimately	 output	
the	 sentence	 under	 100	 words	 with	 the	
maximum	score.	
	

Comparison to Google API	
We	researched	similar	products	and	the	only	
one	we	found	that	came	close	to	as	
comprehensive	as	ours	was	Google’s	Cloud	
Natural	Language	API.	We	found	that	it	could	
extract	meaningful	entities	from	text	and	the	
sentiments	associated	with	them.	If	we	feed	the	
reviews	to	the	API,	these	entities	could	
potentially	be	product	features.	Therefore,	we	
tested	the	API	and	our	pipeline	on	the	same	set	
of	reviews,	all	of	the	laptop	reviews.	The	top	
features	are	listed	in	Table	1.	Compared	to	
Google	API,	our	pipeline	could	extract	more	
meaningful	feature	phrases,	like	mouse	pad	and	

touch	screen.	In	addition,	Google	API	charges	
1000	dollars	for	just	one	category	with	around	
100	products,	while	our	pipeline	is	built	entirely	
on	open	source	tools.		

Google	NLP	 Lumiere	NLP	
price	 software	

screen	 battery	life	

keyboard	 size	

battery	life	 port	

problems	 hard	drive	

battery	 window	

performance	 graphic	

money	 speaker	

purchase	 button	

games	 desktop	

hard	drive	 speed	

model	 touch	screen	

system	 customer	service	

software	 light	weight	

work	 operating	system	

unit	 mouse	pad	

Table	1.	Displays	the	top	features	extracted	
from	the	Google	API	and	our	feature	extraction	

Figure	4.	Displays	the	goal	of	feature	specific	summaries,	the	results	of	the	sentence	similarity	algorithm,	
and	the	results	of	feature	specific	summaries	for	the	features	from	the	set	of	laptop	reviews.	

method.	As	you	can	see	the	results	are	
comparable.	

Conclusion	

We	have	developed	an	interface	for	everyone.	
Our	platform	allows	both	buyers	and	vendors	to	
access	the	information	they	need	to	make	good	
choices	regarding	what	purchases	to	make	and	
how	to	make	a	product	more	favorable	to	
consumers.	They	key	features	of	the	interface	
are	rooted	in:	(1)	feature	extraction,	(2)	
sentiment	analysis,	and	(3)	feature	specific	
summaries.	Furthermore	we	highlighted	several	
InterSystems	technologies	including	
InterSystems	IRIS,	Multimodel	data	platform	
(includes	SQL,	Object	Model,	DocDB),	REST	API,	
InterSystems	IRIS	Natural	Language	Processing	
Tool,	and	InterSystems	Cloud	Manager.	In	the	
future	we	plan	to	expand	our	product	by	
extending	its	use	to	other	sites	with	reviews,	
like	Yelp	and	TripAdvisor.	Additionally	we	will	
filter	out	reviews	that	are	redundant,	sarcastic,	
and	auto-generated.	Our	product	has	immense	
potential	to	become	the	most	widely	trusted	
review	analysis	engine.	So	you	can	stop	scrolling	
and	go	back	to	doing	what	really	matters.	

References
http://jmcauley.ucsd.edu/data/amazon/links.html	

https://www.cs.utah.edu/~riloff/pdfs/cicling05.pdf	

http://www.getginger.jp/	
https://github.com/maciejkula/glove-python	

https://github.com/akhilram/product-
profiler/tree/master/featureExtraction		

https://nlp.stanford.edu/courses/cs224n/2007/fp/j
ohnnyw-hengren.pdf		

https://www.cs.uic.edu/~liub/publications/kdd04-
revSummary.pdf

https://pdfs.semanticscholar.org/ee6c/726b55c6
6d4c222556cfae62a4eb69aa86b7.pdf

https://turing.cs.washington.edu/papers/emnlp0
5_opine.pdf

https://pdfs.semanticscholar.org/d62e/06da793f
86d7216058fe377fdb30a67d877f.pdf

https://www.researchgate.net/profile/Lorin_Hitt/p
ublication/220079805_Self_Selection_and_Infor
mation_Role_of_Online_Product_Reviews/links/
54f505180cf2f28c1362df5c/Self-Selection-and-
Information-Role-of-Online-Product-Reviews.pdf

	 	

Appendix

	

	 	

Figure	1.	This	image	displays	the	first	part	of	our	seller	interface.	It	contains	the	results	of	
feature		extraction,	sentiment	analysis,	and	feature	specific	summaries	for	a	given	product	
sold	on	Amazon.	This	information	can	be	very	helpful	to	marketing	teams,	who	want	to	
know	what	people	are	thinking	and	saying	about	their	product	and	its	features.		

	
Figure	2.	This	image	displays	the	second	part	of	our	seller	interface.	It	contains	
demographic	information	that	tells	who	and	where	people	are	when	they	are	commenting	
about	a	product	and	its	features.	If	you	hover	over	a	region	on	the	map,	you	can	see	what	
feature	of	the	product	was	most	popular	and	what	feature	was	most	liked	in	that	area.		
Below	the	pie	chart	shows	what	percentage	of	reviewers	were	male	and	what	percentage	
were	female.	The	boxes	to	the	right	of	the	pie	chart	contain	the	most	liked	and	most	
popular	features	for	each	gender.		

