
Programming with SQL (2006)

Leader: Al Goins

Support Specialist

Programming Cache SQL

 Module Overview:

 This module covers how to use SQL in your COS
programs.

 Module Objectives

 After completing this module you will be able to:

 Use Dynamic SQL.

 Use Embedded SQL.

Embedded SQL

 Caché SQL supports the ability to embed
SQL statements within Caché ObjectScript
code.

 These embedded SQL statements are
converted to optimized, executable code at
compilation time.

The Macro Preprocessor

 You can used embedded SQL within class
methods or within Caché ObjectScript
routines.

 A routine or method is processed by the
Caché Macro Preprocessor and converted to
.INT (intermediate) code which is
subsequently compiled to executable code.

 The Macro Preprocessor replaces all
embedded SQL statements with the code that
actually executes the SQL statement.

The &sql Directive

 Embedded SQL statements are set off from
the rest of the code by the &sql() directive.

 &sql() is case insensitive

 SQL within the directive can use schema
names or not, if not, then the package of the
class is used as the default schema.

Examples of embedded SQL

Method CountStudents() As %Integer {

&sql(SELECT COUNT(*) INTO :count FROM

MyApp.Student) Quit count

}

AppShare 1:

Using embedded SQL

Literal Values

 Embedded SQL queries may contain literal values
(strings, numbers, or dates):

&sql(SELECT 'Dr.' || Name INTO :name FROM

MyApp.Doctor WHERE State = 'NY')

&sql(SELECT Name INTO :name FROM

MyApp.Person WHERE Age > 50)

Question 1

Which of the following are valid calls to the
embedded SQL directive?

 &sql()

 &SQL()

 &Sql()

 All of the above

Answer 1

Which of the following are valid calls to the
embedded SQL directive?

 &sql()

 &SQL()

 &Sql()

 All of the above

Host Variables

 Host variables can be used in most places
that a literal value can be used or within an
INTO clause.

 A host variable is the name of a local variable,
preceded by a “:” character.

 Input host variables are never valid after
embedded SQL.

 Output host variables are only reliably valid
after embedded SQL when SQLCODE = 0.

Using Host Variables

&sql(SELECT Name INTO :name FROM MyApp.Person WHERE

%ID = 1)

Set minval = 10000

Set maxval = 50000

&sql(SELECT Name,Salary INTO :name, :salary FROM

MyApp.Employee WHERE Salary > :minval AND Salary <

:maxval)

&sql(SELECT Name, Title INTO :val(1), :val(2) FROM

MyApp.Employee WHERE %ID = :emp("ID"))

&sql(SELECT Name, Title INTO :obj.Name, :obj.Title

FROM MyApp.Employee WHERE %ID = :id)

AppShare 2:

Using Host Variables in Embedded
SQL

SQL Cursors

 Used to retrieve multiple rows from the result
of embedded SQL

 An SQL Cursor is DECLAREd and given a
name. You then use this name to OPEN,
FETCH data from, and CLOSE the cursor.

 A cursor name must be unique within a class
or routine.

 The DECLARE statement must occur within
a routine before any statements that use the
cursor.

Using SQL Cursors

&sql(DECLARE C1 CURSOR FOR SELECT %ID,Name

INTO :id, :name FROM Sample.Person ORDER

BY Name)

&sql(OPEN C1)

&sql(FETCH C1)

While (SQLCODE = 0) {

Write id, ": ", name,!

&sql(FETCH C1)

}

&sql(CLOSE C1)

Question 2

SQL Cursors can be reused throughout your
method or routine.

 True

 False

Answer 2

SQL Cursors can be reused throughout your
method or routine.

 True

 False

Dynamic SQL

 Queries are prepared at runtime rather than
compile time.

 Allows you to build the query based on user
input or runtime status

 Slightly less efficient because of runtime
preparation

 Queries are cached in order to speed up
reuse.

The %Library.ResultSet Class

 Dynamic SQL is supported via the
%Library.ResultSet class.

 Applications create an instance of the
%Library.ResultSet class and use it to
prepare, execute, and iterate over queries.

Using the %Library.ResultSet Class

Set result=##class(%ResultSet).%New()

Set sc=result.Prepare("SELECT ID, Name,

Salary FROM Employee WHERE Salary > ?")

Set sc=result.Execute(10000)

Fetching the Data and Closing

While result.Next(.sc) {

If $$$ISERR(sc)

Quit

Write

result.Data("Name"),result.Data("Salary"),!

}

do result.Close()

AppShare 3:

Using Dynamic SQL

Module Summary

 This module covered:

 How to program with embedded SQL.

 How to program with dynamic SQL.

References

This module is part of the following learning track(s):

(1) Cache SQL:

 Module 1: Introduction to SQL

 Module 2: Programming with SQL

 Module 3: SQL Connectivity

 Module 4: SQL Gateway

 Module 5: SQL Security

 Module 6: Performance and Debugging

Programming with SQL

Leader: Al Goins
Support Specialist

Questions

