
Show Plan to Generated

COS code

Brendan Bannon

9/11/2013

Introduction

• In this class we will look at Show Plans for Queries and
then the generated code and try to see how the two relate
to one another.

• Match up phases in the Show Plan with part of the COS

• Show what is missing from the Show Plan

• Show what can be misleading in the Show Plan

• Identify what the different line tag of the COS mean

Basic Query Plan

Simple Query looping over 2 tables.

SELECT T.ID, T.Name, T.Title, A.ChildSub, A.Name,
A.HireDate, A.DaysWorked

FROM WITS.TeamLeaders T LEFT OUTER JOIN
WITS.Advisors A ON T.ID = A.ParentPointer

WHERE T.Title LIKE 'Senior%'

Basic Show Plan

• Relative cost = 433318

• Read master map WITS.TeamLeaders.IDKEY, looping on ID.

• For each row:

• Read master map WITS.Advisors.IDKEY, using the given
ParentPointer, and looping on childsub,
generating a row padded with nulls if none found.

• For each row:
Output the row.

What is missing from the Show Plan?

• WHERE T.Title LIKE 'Senior%‘

• When we get the fields

• When we execute the compute code

Embedded SQL

• The INTO list is used as variables in the generated code
so it will be a little easier to read.

SQL1 ;

#SQLCOMPILE SELECT=ODBC

&SQL(DECLARE cur CURSOR FOR
SELECT T.ID, T.Name, T.Title, A.ChildSub, A.Name, A.HireDate, A.DaysWorked
INTO :TID, :TName, :TTitle, :AChildSub, :AName, :AHireDate, :ADaysWorked
FROM WITS.TeamLeaders T

LEFT OUTER JOIN WITS.Advisors A ON T.ID = A.ParentPointer
WHERE T.Title LIKE 'Senior%')

&SQL(OPEN cur)
f &SQL(FETCH cur) QUIT:SQLCODE'=0
&SQL(CLOSE cur)

Show Plan to COS

• Read master map WITS.TeamLeaders.IDKEY, looping on ID.

; asl MOD# 2

s TID="“

%0AmBk1 s TID=$o(^WITS.TeamLeadersD(TID),1)

i TID="" g %0AmBdun

Show Plan to COS

• Read master map WITS.Advisors.IDKEY, using the given
ParentPointer, and looping on childsub,

s AChildSub="“

%0AmDk1 i %cur035322p(4)=2 g %0AmDdun

s AChildSub=$o(^WITS.TeamLeadersD(%cur035322d(15)
,"ChildPointer",AChildSub),1)

i AChildSub="" g %0AmDdun:%cur035322p(4)=1

g %0AmD0pad

Cursor Based Tags

• Tags related to the cursor commands use the cursor
name in the tag name.

• For this example the cursor name is cur so we have

• %cur0o for the OPEN

• %cur0f for the FETCH

• %cur0c for the CLOSE

• %cur0E for the error trap

Looping tags

• The real work start at the tag with first in the name, if
there is only one query in the routine the tag will be

• %0Afirst

• Tags with a lower case k and then a number at the end
are looping tags

• %0AmBk1 First loop on first global

• %0AmDk1 First loop on second global

• If the global had multiple subscripts to loop on you would
have multiple tags: %0AmBk1, %0AmBk2, %0AmBk3

Read Committed Code

• If running in Read Committed Mode we need to make
sure we can lock the row and then we double check the
values have not changed.

• g:$zu(115,2)=0 %0AmBuncommitted…..

• %0AmBuncommitted ;

Conversion Code and Compute Code

• This code is generated just before the OPEN code

• Conversion code tags have a lower case s in the tag
name.

• %0AmBs1 called from %0AmBk1+2

• %0AmDs1 called from %0AmDk1+3

• %0AmDs2 called from %0AmDk1+3

• Compute code tags have a lower case r in the tag

• %0AmDr3 called from %0AmDk1+5

Calling a Sub Module

• Sometimes are part of the processing of data we need to
call out to a different block of code to prep some part of
the data.

SELECT A.Name, I.Status, I.OpenDate

FROM WITS.Advisors A JOIN WITS.Issues I ON A.ID =
I.Owner

WHERE A.HireDate = ?

Query Plan

• Read master map WITS.Issues.IDKEY, looping on ID.

• For each row:

• Call module D, which populates temp-file A.
Read temp-file A, using the given ID.
For each row:
Output the row.

• module D

• Read index map WITS.Advisors.HireDateIndex, using the given HireDate, and looping on
ParentPointer and childsub.

• For each row:

• Read master map WITS.Advisors.IDKEY, using the given idkey value.
Add a row to temp-file A, subscripted by ID,
with node data of Name.

How Many Times is Module D called?

• [stats] Time in Module D = 0.000 Module Execution Count = 1
Global References = 0 Commands Executed = 51

• Read index map WITS.Advisors.HireDateIndex, using the
given HireDate, and looping on ParentPointer and childsub.

• For each row:

• Read master map WITS.Advisors.IDKEY, using the given
idkey value.
Add a row to temp-file A, subscripted by ID,
with node data of Name.

Sub Query Example

select Unit, Ten_Status, Officer_Name, Date_Time, Action

from OPD_CADCOPY.Unit_Log as A

where (Date_Time = (select MAX(B.Date_Time)

from OPD_CADCOPY.Unit_Log as B

where A.Unit = B.Unit

and Date_Time > '1999-01-01'

and (A.Action = 'OnDuty'

or A.Action = 'OffDuty'

or A.Action = 'OffDuty Mobile'

or A.Action = 'In Service'

or A.Action = 'Out Of Service'

or A.Action = 'Out Of Service Mobile')))

and (A.Action = 'In Service')

order by Unit

Sub Query Plan does not look so bad

• subquery

• Call module E.
Determine subquery result.

• module E

• Call module G, which populates bitmap temp-file B.

• Generate a stream of idkey values using the multi-index combination:

• ((bitmap index OPD_CADCopy.Unit_Log.Unit) INTERSECT (bitmap temp-file B))
For each idkey value:

• Read master map OPD_CADCopy.Unit_Log.IDKEY, using the given idkey value.
Accumulate the max(Date_Time).

• module G

• Read index map OPD_CADCopy.Unit_Log.DateTime, looping on Date_Time (with a range
condition) and ID.

• For each row:

• Add ID bit to bitmap temp-file B.

http://localhost:57772/csp/sys/exp/%25CSP.UI.Portal.SQL.Home.zen?$NAMESPACE=WITS#moduleE.
http://localhost:57772/csp/sys/exp/%25CSP.UI.Portal.SQL.Home.zen?$NAMESPACE=WITS#moduleG

BUT

• module G

• [stats] Time in Module G = 26.041 Module Execution
Count = 115 Global References = 28,521,035 Commands
Executed = 70,491,690

• Read index map OPD_CADCopy.Unit_Log.DateTime,
looping on Date_Time (with a range condition) and ID.

• For each row:

• Add ID bit to bitmap temp-file B.

Problem

• Even though we are using an index this module is taking
26 or the 28 seconds of the query run.

• The range condition is very big

• Date_Time > '1999-01-01'

• We are calling the module 115 times because it is based
on a value from the outer query

• where A.Unit = B.Unit

Solution

• We need to add an index to the class based on Unit and
Date_Time.

• Index WITSIndex On (Unit, DateTime);

• Before

• [stats] Time in Module MAIN = 28.036 Module Execution Count = 3
Global References = 28,671,996 Commands Executed = 73,427,556
Number of Rows = 2

• After

• [stats] Time in Module MAIN = 0.049 Module Execution Count = 3
Global References = 22,067 Commands Executed = 168,096
Number of Rows = 2

Show Plan to Generated

COS code

Brendan Bannon

