THE KEYS TO
BREAKTHROUGH
APPLICATIONS

Show Plan to Generated
COS code

Brendan Bannon

9/11/2013

INTERSYSTENS

* In this class we will look at Show Plans for Queries and
then the generated code and try to see how the two relate
to one another.

 Match up phases in the Show Plan with part of the COS
* Show what is missing from the Show Plan

 Show what can be misleading in the Show Plan

* |dentify what the different line tag of the COS mean

THE KEYS TO BREAKTHROUGH APPLICATIONS IHTERSYST[MS

Simple Query looping over 2 tables.

SELECT T.ID, T.Name, T.Title, A.ChildSub, A.Name,
A.HireDate, A.DaysWorked

FROM WITS.TeamLeaders T LEFT OUTER JOIN
WITS.Advisors A ON T.ID = A.ParentPointer

WHERE T.Title LIKE 'Senior%

THE KEYS TO BREAKTHROUGH APPLICATIONS IHTERSYST[MS

* Relative cost = 433318
 Read master map WITS.TeamLeaders.IDKEY, looping on ID.

* Foreach row:

 Read master map WITS.Advisors.IDKEY, using the given
ParentPointer, and looping on childsub,
generating a row padded with nulls if none found.

* Foreach row:
Output the row.

THE KEYS TO BREAKTHROUGH APPLICATIONS IHTERSYST[MS

_rom the Show Plan?

« WHERE T.Title LIKE 'Senior%
* When we get the fields

* When we execute the compute code

THE KEYS TO BREAKTHROUGH APPLICATIONS INTERSYST EMS

* The INTO list is used as variables in the generated code
so it will be a little easier to read.

SQL1 :
#SQLCOMPILE SELECT=0DBC

&SQL(DECLARE cur CURSOR FOR
SELECT T.ID, T.Name, T.Title, A.ChildSub, A.Name, A.HireDate, A.DaysWorked

INTO :TID, :TName, :TTitle, :AChildSub, :AName, :AHireDate, :ADaysWorked
FROM WITS.TeamLeaders T

LEFT OUTER JOIN WITS.Advisors A ON T.ID = A.ParentPointer
WHERE T.Title LIKE 'Senior%")

&SQL(OPEN cur)
f &SQL(FETCH cur) QUIT:SQLCODE'=0
&SQL(CLOSE cur)

THE KEYS TO BREAKTHROUGH APPLICATIONS IHTERSYST[MS

» Read master map WITS.TeamLeaders.IDKEY, looping on ID.
: as|l MOD# 2

s TID="
%0AmBk1 s TID=$0(*WITS.TeamLeadersD(TID),1)

i TID="" g %0AmBdun

THE KEYS TO BREAKTHROUGH APPLICATIONS |NTERSYSTEMS

 Read master map WITS.Advisors.IDKEY, using the given
ParentPointer, and looping on childsub,

s AChildSub="¢
%0AmDK1 i %cur035322p(4)=2 g %0AmDdun

s AChildSub=$0(*WITS.TeamLeadersD(%cur035322d(15)
, ChildPointer",AChildSub),1)

i AChildSub="" g %0AmDdun:%cur035322p(4)=1
g %0AmD0pad

THE KEYS TO BREAKTHROUGH APPLICATIONS [NTERSYSTEMS

 Tags related to the cursor commands use the cursor
name in the tag name.

 For this example the cursor name is cur so we have

* %cur0o for the OPEN

* Y%cur0f for the FETCH
* %curOc for the CLOSE
* %curOE for the error trap

THE KEYS TO BREAKTHROUGH APPLICATIONS |NTERSYST[MS

* Looping tags

* The real work start at the tag with first in the name, if
there is only one query in the routine the tag will be

o %O0Afirst

 Tags with a lower case k and then a number at the end
are looping tags
* %0AmMBK1 First loop on first global
* %0AmDK1 First loop on second global

* If the global had multiple subscripts to loop on you would
have multiple tags: %0AmBk1, %0AmBk2, %0AmBk3

THE KEYS TO BREAKTHROUGH APPLICATIONS |HT[RSYST EMS

* [f running in Read Committed Mode we need to make
sure we can lock the row and then we double check the

values have not changed.
« 9:$5zu(115,2)=0 %0AmBuncommitted.....

* %0AmBuncommitted :

THE KEYS TO BREAKTHROUGH APPLICATIONS IHTERSYST[MS

-ode and Compute Code

 This code is generated just before the OPEN code

« Conversion code tags have a lower case s in the tag
name.

e %0AmMBs1 called from %0AmBk1+2
e %0AmMDs1 called from %0AmDk1+3
e %0AmMDs2 called from %0AmDKk1+3

« Compute code tags have a lower case r in the tag
* %0AmDr3 called from %0AmMDk1+5

THE KEYS TO BREAKTHROUGH APPLICATIONS [NTERSYSTEMS

« Sometimes are part of the processing of data we need to
call out to a different block of code to prep some part of
the data.

SELECT A.Name, |.Status, I.OpenDate

FROM WITS.Advisors A JOIN WITS.Issues | ON A.ID =
|.Owner

WHERE A.HireDate = ?

THE KEYS TO BREAKTHROUGH APPLICATIONS IHTERSYST[MS

Read master map WITS.Issues.IDKEY, looping on ID.
For each row:

Call module D, which populates temp-file A.
Read temp-file A, using the given ID.

For each row:

Output the row.

module D

Read index map WITS.Advisors.HireDatelndex, using the given HireDate, and looping on
ParentPointer and childsub.

For each row:

Read master map WITS.Advisors.IDKEY, using the given idkey value.
Add a row to temp-file A, subscripted by ID,

with node data of Name.
THE KEYS TO BREAKTHROUGH APPLICATIONS INTERSYSTEMS

_es is Module D called?
s

o [stats] Time in Module D = 0.000 Module Execution Count = 1
Global References = 0 Commands Executed = 51

 Read index map WITS.Advisors.HireDatelndex, using the
given HireDate, and looping on ParentPointer and childsub.

 Foreach row:

» Read master map WITS.Advisors.IDKEY, using the given
idkey value.
Add a row to temp-file A, subscripted by ID,
with node data of Name.

THE KEYS TO BREAKTHROUGH APPLICATIONS IHTERSYST[MS

select Unit, Ten_Status, Officer Name, Date_Time, Action
from OPD_CADCOPY.Unit_Log as A

where (Date_Time = (select MAX(B.Date_Time)

from OPD_CADCOPY.Unit_Log as B

where A.Unit = B.Unit

and Date_Time > '1999-01-01"

and (A.Action = 'OnDuty"

or A.Action ="'OffDuty’

or A.Action = 'OffDuty Mobile'

or A.Action ="In Service'

or A.Action ='Out Of Service'

or A.Action ='Out Of Service Mobile')))

and (A.Action ='In Service')
order by Unit

THE KEYS TO BREAKTHROUGH APPLICATIONS IHT[RSYST EMS

-n does not look so bad

* subquery

« Call module E.
Determine subquery result.

* module E
« Call module G, which populates bitmap temp-file B.
» Generate a stream of idkey values using the multi-index combination:

* ((bitmap index OPD_CADCopy.Unit_Log.Unit) INTERSECT (bitmap temp-file B))
For each idkey value:

* Read master map OPD_CADCopy.Unit_Log.IDKEY, using the given idkey value.
Accumulate the max(Date_Time).

e module G

* Read index map OPD_CADCopy.Unit_Log.DateTime, looping on Date_Time (with a range
condition) and ID.

* Foreach row:

THE KEYS TO BREAKTHROUGH APPLICATIONS
- Add ID bit to bitmap temp-file B. INTERSYSTEMS

http://localhost:57772/csp/sys/exp/%25CSP.UI.Portal.SQL.Home.zen?$NAMESPACE=WITS#moduleE.
http://localhost:57772/csp/sys/exp/%25CSP.UI.Portal.SQL.Home.zen?$NAMESPACE=WITS#moduleG

module G

[stats] Time in Module G =26.041 Module Execution
Count =115 Global References = 28,521,035 Commands
Executed = 70,491,690

Read index map OPD_CADCopy.Unit_Log.DateTime,
looping on Date_Time (with a range condition) and ID.

For each row:
Add ID bit to bitmap temp-file B.

THE KEYS TO BREAKTHROUGH APPLICATIONS |NTERSYSTEMS

* Even though we are using an index this module is taking
26 or the 28 seconds of the query run.

* The range condition is very big
 Date_Time >'1999-01-01'

« We are calling the module 115 times because it is based
on a value from the outer query

* where A.Unit = B.Unit

THE KEYS TO BREAKTHROUGH APPLICATIONS IHTERSYST[MS

 We need to add an index to the class based on Unit and
Date Time.

* Index WITSIndex On (Unit, DateTime);

* Before

o [stats] Time in Module MAIN = 28.036 Module Execution Count = 3

Global References = 28,671,996 Commands Executed = 73,427,556
Number of Rows = 2

o After

o [stats] Time in Module MAIN = 0.049 Module Execution Count = 3

Global References = 22,067 Commands Executed = 168,096
Number of Rows = 2

THE KEYS TO BREAKTHROUGH APPLICATIONS |NTERSYSTEMS

THE KEYS TO
BREAKTHROUGH
APPLICATIONS

Show Plan to Generated
COS code

Brendan Bannon

INTERSYSTENS

