

Deep Feature Synthesis
A Data Science Machine for Relational Databases For Caché

Ryan St.Pierre

Sarat Vysyaraju

Deep Feature Synthesis

Purpose

Data science involves analyzing and deriving insights
from large sets of data. Such a process requires a
data science team to invest a lot of time and
resources in order to draw meaningful conclusions
from the data. We have designed an end to end
product for data residing on Caché by adapting the
Deep Feature Synthesis (DFS) algorithm [1]. This
product automates the process, by aiding data
science teams in the discovery of hidden links,
generation of meaningful features from the data,
and creation of accurate predictive models in a more
time efficient manner.

The rest of the paper is organized as follows. We
begin by describing the DFS algorithm. Then we state
the problems and solutions we encountered while
integrating DFS to Caché. Next, we explain the graph
optimizations that can be applied to a relational
structure to decrease the complexity of the DFS
algorithm. Following this, we explain the steps taken
in the machine learning process to produce
predictive models for the data. Lastly, we outline the
possibility for future work regarding the
improvement of the tool.

Deep Feature Synthesis

The Deep Feature Synthesis algorithm automatically
aggregates features in a relational database
structure [1]. To do such, the algorithm recursively
traverses along the relationships in the data,
applying mathematical functions over the features in
this traversal and appending the result to a base
table. The final output is an expanded base table that
represents a much larger portion of the relational
data.

Integration Problems Encountered

The DFS algorithm is designed to work with
structures compatible with MySQL convention.
However, there are several Caché Object Script
datatypes that are handled in a way whose storage

differs from this convention. We designed several
abstractions to handle these cases, each described
below.

Array Denormalization

In Caché using an array in a class definition generates
two tables, one for the class itself (parent table) and
the other holding the information of the array, which
contains a key-value pair and link to the parent table.

However, the problem with the Caché array tables is
that they are immutable, i.e., additional features
(columns) cannot be added. In our implementation
of the DFS algorithm we dynamically append features
into tables in the relational structure. This approach
makes denormalizing the array structure by
transferring the array information into the editable
parent table a necessity. In addition, this solution
reduces the depth of our structure, improving our
overall efficiency.

Figure 1: Denormalization of array storage necessary for
dynamic feature expansion

We illustrate the denormalization process in Figure
1, where a Branch has an array of Balances. In our
approach, we append a column to the parent table
for each unique key and transfer the values from the
array table into the corresponding key column in the
parent table. Thus, we are able to denormalize the
array structure without losing any information.

List Handling

In MySQL each column of a given row contains one
value (or foreign key). In Caché tables this may not
be the case, as multiple values or object references
can be saved as a list in one entry. We identified two
main types of lists in Caché of importance to us: (i)
lists of datatypes and (ii) lists of object references. To
handle lists of datatypes we compute aggregation
functions over lists of numeric types to generate
meaningful features about the list itself. For
example, in a Student table with a list of grades, e-
feature expansion generates the sum, mean,
minimum, and maximum of the grades for each
student.

List of Object References

It is clear in Figure 2 below, that a list of object
references represents a many to many relationship.
In this example each teacher has reference to
multiple students and it is also possible for students
to have multiple teachers (such as student 5).

Figure 2: Abstraction for many to many relationships to allow
the proper flow of information while avoiding an infinite loop.

However, if the relationship between teacher and
student is directly handled as a many to many
relationship the DFS algorithm enters an infinite
traversal between these two entities. To solve this
problem, we insert a buffer table into the structure
which maps the IDs of the two respective tables. In

addition, we established one to many relationships
between the two original tables and the buffer table
in order to preserve the original integrity of the
relationship. This abstraction allows information and
aggregations to travel in both directions without an
infinite loop.

Graph Optimizations

The complexity of the DFS algorithm is exponential
with respect to depth. Thus, it is crucial to decrease
the depth of the relational structure whenever
possible. We make one such optimization by treating
one to many relationships of type unique as one to
one relationships, and thus allowing us to
denormalize the structure. Below, in Figure 3 we
give an example of a portion of a possible relational
structure for a company, where the black arrows
represent one to one relationships and the red
arrows represent one to many relationships.

Figure 3: Denormalizing of one to one relationships to decrease

DFS complexity while relational integrity.

In an object oriented approach one to many
relationships of type unique may be used to
normalize the structure for organizational purposes
or to preserve clarity of information. However,
taking such an approach unnecessarily increases the
depth of the structure, and consequentially the
complexity of our algorithm. In a one to one
relationship the property of the child can be
represented in the parent. Thus, as a preprocessing
step to our algorithm we move the information of the
child into the parent of one to one relationship,
ensuring that we preserve the relational integrity of
the structure. By denormalizing the structure in this
way we decrease the complexity of our structure and

prevent our algorithm from doing redundant
aggregations over one to one relationships.

Machine Learning

The machine learning (ML) process attempts to build
a predictive model for a chosen target column in the
target table from the DFS algorithm. We begin by
pre-processing the data which includes: numerical
encoding of categorical data, removing rows/entries
with incomplete data, normalizing the scale of the
data (between -1 to 1), and sharding the data into
multiple tables. The process of sharding entails
distributing the data into two or more shards (slave
machines). The benefit of sharding the resulting
target table is two-fold: primarily for parallelization
of complex computations and secondly for storing
the data across multiple devices, which may be
necessary if the data does not fit on one machine.

We also use a Spark connector which manages the
communication with the Caché shard/slave
machines during the machine learning process. The
Spark connector is preferable to a traditional JDBC
connection because it allows the Spark master to run
computations hosted on the shards themselves.

ML Pipeline

Once the preprocessing is complete the data is sent
through a pipeline. The pipeline is designed, utilizing
the available Spark ML and Spark MLlib libraries, with
three main stages: (i) feature selection, (ii) clustering,
and (iii) predictive modeling.

Feature Selection

The DFS algorithm adds many columns to the target
table. Our first step in the pipeline is to identify
which of these columns best correlate the target
column. We choose a percentage of the top ranking
columns to carry through the rest of the machine
learning pipeline, reducing the complexity of the
following tasks.

Our current implementation of feature selection
uses Singular Value Decomposition (SVD) to describe
each column using a certain number of components,

followed by the Fisher’s Statistical test to rank these
columns with respect to the target column.

Clustering

We make no assumption that the data in the target
table is uniform. To identify natural clusters in the
data we currently use K-Means clustering method.

Predictive Modeling

Lastly, for each of the clusters we train a predictive
model that predicts the value of the target column
based on the values of the other features. Our
current implementation uses a Decision Tree
Random Forest as the predictive model.

Hyper-parameter optimization

Each stage in the pipeline has one or more
parameters. Such parameters include: the number
of dimensions to use in SVD, the percentage of
features retained after ranking, the number of
clusters to use, the maximum depth of the decision
trees, and the number of decision trees in the
random forest. We attempt to tune these
parameters by reducing the total error over the
entirety of the pipeline, using a greedy random
search heuristic.

Future Work

We have designed and implemented a tool that
successfully derives insight from a set of relational
tables. However, we feel there are several
opportunities to improve the quality and robustness
of the tool.

First, we would like to incorporate more feature
expansion types. Currently we are supporting 6 SQL
aggregation types: SUM, MIN, MAX, STD, COUNT,
and AVG. We would like to provide the user with
more options allowing them to select aggregations
such as probability density function or cumulative
distribution function and let them see how it changes
the accuracy of the final model.

Furthermore, we believe that the accuracy of our
final model can be improved by adding greater
functionality to the ML pipeline. The machine
learning pipeline is designed to have three modular
steps, the implementation of which can be easily
changed. For example, we currently support K-
Means clustering for our clustering method. In the
future it would be best to include other clustering
methods, such as Gaussian Mixture Model (GMM).
This would give the user the option to choose which
techniques to use depending on the type of data
being analyzed.

One necessary component for the future success of
our product is an abstraction that allows entities to
have more than 1000 properties, which is a hard limit
for Caché class definitions. We use class definitions
as containers for feature aggregation and use
dynamic SQL queries to access and manipulate these
features. Given data with a large amount of starting
features it would be possible for the DFS algorithm to
eclipse this 1000 property limit. Thus, an abstraction
needs to be built in which SQL queries can be
computed on an entity with more than 1000
features, represented on the backend with more
than one class definition.

Lastly, we would like to build a front-end interface,
most likely in the Management Portal, for the user to
follow and influence the end to end process. This
would include setting the input tables, target
column, and machine learning pipeline parameters.
In addition, the UI would give the user the ability to
toggle the input values into the created model and
graphically observe how it influences the prediction
in real time.

References

[1] J. M. Kanter and K. Veeramachaneni, "Deep

Feature Synthesis: Towards Automating Data

Science Endeavors," in IEEE International

Conference on Data Science and Advanced

Analytics , Paris, 2015.

