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Deep Feature Synthesis 

Purpose 
 
Data science involves analyzing and deriving insights 
from large sets of data.  Such a process requires a 
data science team to invest a lot of time and 
resources in order to draw meaningful conclusions 
from the data.  We have designed an end to end 
product for data residing on Caché by adapting the 
Deep Feature Synthesis (DFS) algorithm [1]. This 
product automates the process, by aiding data 
science teams in the discovery of hidden links, 
generation of meaningful features from the data, 
and creation of accurate predictive models in a more 
time efficient manner. 
 
The rest of the paper is organized as follows.  We 
begin by describing the DFS algorithm.  Then we state 
the problems and solutions we encountered while 
integrating DFS to Caché.  Next, we explain the graph 
optimizations that can be applied to a relational 
structure to decrease the complexity of the DFS 
algorithm.  Following this, we explain the steps taken 
in the machine learning process to produce 
predictive models for the data.  Lastly, we outline the 
possibility for future work regarding the 
improvement of the tool. 

 
Deep Feature Synthesis  
 
The Deep Feature Synthesis algorithm automatically 
aggregates features in a relational database 
structure [1].   To do such, the algorithm recursively 
traverses along the relationships in the data, 
applying mathematical functions over the features in 
this traversal and appending the result to a base 
table.  The final output is an expanded base table that 
represents a much larger portion of the relational 
data.   
 

Integration Problems Encountered 
 
The DFS algorithm is designed to work with 
structures compatible with MySQL convention.  
However, there are several Caché Object Script 
datatypes that are handled in a way whose storage 

differs from this convention.  We designed several 
abstractions to handle these cases, each described 
below. 
 
Array Denormalization 
 
In Caché using an array in a class definition generates 
two tables, one for the class itself (parent table) and 
the other holding the information of the array, which 
contains a key-value pair and link to the parent table.  
 
However, the problem with the Caché array tables is 
that they are immutable, i.e., additional features 
(columns) cannot be added. In our implementation 
of the DFS algorithm we dynamically append features 
into tables in the relational structure.  This approach 
makes denormalizing the array structure by 
transferring the array information into the editable 
parent table a necessity.   In addition, this solution 
reduces the depth of our structure, improving our 
overall efficiency.  

Figure 1: Denormalization of array storage necessary for 
dynamic feature expansion 

We illustrate the denormalization process in Figure 
1, where a Branch has an array of Balances.  In our 
approach, we append a column to the parent table 
for each unique key and transfer the values from the 
array table into the corresponding key column in the 
parent table.  Thus, we are able to denormalize the 
array structure without losing any information.   
 
 



List Handling 
 
In MySQL each column of a given row contains one 
value (or foreign key).  In Caché tables this may not 
be the case, as multiple values or object references 
can be saved as a list in one entry.  We identified two 
main types of lists in Caché of importance to us: (i) 
lists of datatypes and (ii) lists of object references.  To 
handle lists of datatypes we compute aggregation 
functions over lists of numeric types to generate 
meaningful features about the list itself.  For 
example, in a Student table with a list of grades, e-
feature expansion generates the sum, mean, 
minimum, and maximum of the grades for each 
student.  
 
List of Object References 
 
It is clear in Figure 2 below, that a list of object 
references represents a many to many relationship.  
In this example each teacher has reference to 
multiple students and it is also possible for students 
to have multiple teachers (such as student 5). 
 

 
Figure 2: Abstraction for many to many relationships to allow 
the proper flow of information while avoiding an infinite loop. 

However, if the relationship between teacher and 
student is directly handled as a many to many 
relationship the DFS algorithm enters an infinite 
traversal between these two entities.  To solve this 
problem, we insert a buffer table into the structure 
which maps the IDs of the two respective tables.  In 

addition, we established one to many relationships 
between the two original tables and the buffer table 
in order to preserve the original integrity of the 
relationship.  This abstraction allows information and 
aggregations to travel in both directions without an 
infinite loop.  
 

Graph Optimizations 
 
The complexity of the DFS algorithm is exponential 
with respect to depth. Thus, it is crucial to decrease 
the depth of the relational structure whenever 
possible.  We make one such optimization by treating 
one to many relationships of type unique as one to 
one relationships, and thus allowing us to 
denormalize the structure.    Below, in Figure 3 we 
give an example of a portion of a possible relational 
structure for a company, where the black arrows 
represent one to one relationships and the red 
arrows represent one to many relationships.   
 

 
Figure 3: Denormalizing of one to one relationships to decrease 

DFS complexity while relational integrity. 

In an object oriented approach one to many 
relationships of type unique may be used to 
normalize the structure for organizational purposes 
or to preserve clarity of information.  However, 
taking such an approach unnecessarily increases the 
depth of the structure, and consequentially the 
complexity of our algorithm. In a one to one 
relationship the property of the child can be 
represented in the parent.  Thus, as a preprocessing 
step to our algorithm we move the information of the 
child into the parent of one to one relationship, 
ensuring that we preserve the relational integrity of 
the structure.  By denormalizing the structure in this 
way we decrease the complexity of our structure and 



prevent our algorithm from doing redundant 
aggregations over one to one relationships. 

 
Machine Learning 
 
The machine learning (ML) process attempts to build 
a predictive model for a chosen target column in the 
target table from the DFS algorithm. We begin by 
pre-processing the data which includes: numerical 
encoding of categorical data, removing rows/entries 
with incomplete data, normalizing the scale of the 
data (between -1 to 1), and sharding the data into 
multiple tables. The process of sharding entails 
distributing the data into two or more shards (slave 
machines). The benefit of sharding the resulting 
target table is two-fold: primarily for parallelization 
of complex computations and secondly for storing 
the data across multiple devices, which may be 
necessary if the data does not fit on one machine.   
 
We also use a Spark connector which manages the 
communication with the Caché shard/slave 
machines during the machine learning process.  The 
Spark connector is preferable to a traditional JDBC 
connection because it allows the Spark master to run 
computations hosted on the shards themselves.  
 

ML Pipeline 
 
Once the preprocessing is complete the data is sent 
through a pipeline. The pipeline is designed, utilizing 
the available Spark ML and Spark MLlib libraries, with 
three main stages: (i) feature selection, (ii) clustering, 
and (iii) predictive modeling.  
 
Feature Selection  
 
The DFS algorithm adds many columns to the target 
table.  Our first step in the pipeline is to identify 
which of these columns best correlate the target 
column. We choose a percentage of the top ranking 
columns to carry through the rest of the machine 
learning pipeline, reducing the complexity of the 
following tasks.   
 
Our current implementation of feature selection 
uses Singular Value Decomposition (SVD) to describe 
each column using a certain number of components, 

followed by the Fisher’s Statistical test to rank these 
columns with respect to the target column. 
 
Clustering 
 
We make no assumption that the data in the target 
table is uniform.   To identify natural clusters in the 
data we currently use K-Means clustering method.  
 
Predictive Modeling 
 
Lastly, for each of the clusters we train a predictive 
model that predicts the value of the target column 
based on the values of the other features.  Our 
current implementation uses a Decision Tree 
Random Forest as the predictive model.  
 
Hyper-parameter optimization  
 
Each stage in the pipeline has one or more 
parameters.  Such parameters include: the number 
of dimensions to use in SVD, the percentage of 
features retained after ranking, the number of 
clusters to use, the maximum depth of the decision 
trees, and the number of decision trees in the 
random forest.  We attempt to tune these 
parameters by reducing the total error over the 
entirety of the pipeline, using a greedy random 
search heuristic.   

 
Future Work 
 
We have designed and implemented a tool that 
successfully derives insight from a set of relational 
tables.  However, we feel there are several 
opportunities to improve the quality and robustness 
of the tool. 
 
First, we would like to incorporate more feature 
expansion types.  Currently we are supporting 6 SQL 
aggregation types: SUM, MIN, MAX, STD, COUNT, 
and AVG.  We would like to provide the user with 
more options allowing them to select aggregations 
such as probability density function or cumulative 
distribution function and let them see how it changes 
the accuracy of the final model. 
 



Furthermore, we believe that the accuracy of our 
final model can be improved by adding greater 
functionality to the ML pipeline.  The machine 
learning pipeline is designed to have three modular 
steps, the implementation of which can be easily 
changed.  For example, we currently support K-
Means clustering for our clustering method.  In the 
future it would be best to include other clustering 
methods, such as Gaussian Mixture Model (GMM).  
This would give the user the option to choose which 
techniques to use depending on the type of data 
being analyzed.  
 
One necessary component for the future success of 
our product is an abstraction that allows entities to 
have more than 1000 properties, which is a hard limit 
for Caché class definitions.  We use class definitions 
as containers for feature aggregation and use 
dynamic SQL queries to access and manipulate these 
features.   Given data with a large amount of starting 
features it would be possible for the DFS algorithm to 
eclipse this 1000 property limit.  Thus, an abstraction 
needs to be built in which SQL queries can be 
computed on an entity with more than 1000 
features, represented on the backend with more 
than one class definition.  
 
Lastly, we would like to build a front-end interface, 
most likely in the Management Portal, for the user to 
follow and influence the end to end process.  This 
would include setting the input tables, target 
column, and machine learning pipeline parameters.  
In addition, the UI would give the user the ability to 
toggle the input values into the created model and 
graphically observe how it influences the prediction 
in real time.   
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