
0 | InterSystems

Frozen Plans and Parallel Queries (2017)

Brendan Bannon Support Manager

1 | InterSystems

First a Little Background

SQL Statement Index

2 | InterSystems2 | InterSystems

SQL Statement Index

A Statement has 5 important pieces:

• Query Text

• Hash

• Plan

• Basic Runtime Stats

• Frozen State

The Statement Index has everything you need to regenerate

the same INT code for a given plan.

3 | InterSystems

SQL Statement Index: How it works

When we compile an new SQL Query, we add it to an index of

all the SQL statements that were compiled in that namespace.

When that query comes in (ODBC, Dynamic, Embedded), we

check it against the index, If it is found in the index that

Statement is used

One Statement can show up in multiple routines: xDBC

Cached Query, Dynamic Cached Query, Embedded SQL.

4 | InterSystems

Statement Index: Technical Details

Statements are stored in tables (eq. objects).

– INFORMATION_SCHEMA.STATEMENTS

– INFORMATION_SCHEMA.STATEMENT*

– Mapped to ^rINDEXSQL(“sqlidx”)

Statements are standardized prior to storage.

– Uppercase with space normalization & parameterization.

Frozen Statements remain after a query purge.

– Unfrozen statements do not.

5 | InterSystems

Statement Index: Additional Details

Your statements can be imported and exported.

 Implication: you can move frozen plans between machines.

Statements must be the same to benefit from freezing.

 Changing the SELECT-list order changes the statement.

Statement can be managed in 3 ways:

 INFORMATION_SCHEMA tables/objects.

$SYSTEM.SQL API

Management Portal

– Home->System Explorer->SQL: Statements tab

6 | InterSystems

© InterSystems Corporation. All rights reserved.

6 | InterSystems

Questions

SQL Statements

7 | InterSystems

Frozen Plans

8 | InterSystems8 | InterSystems

InterSystems General Development Motto

Every version is faster than the last one

9 | InterSystems9 | InterSystems

Some Examples with Negative Side Effects

• Outlier Selectivity

• If a property had one value that shows up in the data way more than any other

this is an Outlier

• TuneTable will now store the Selectivity of this Outlier

• The Selectivity of the other values will be calculated without the Outlier value

• Development assumed the most common Outlier would be NULL

• Union Or Optimization

• Rewrite queries with OR conditions to be UNIONs of the different ORs

• If indices where available for the OR conditions they would be used efficiently in

the UNION legs

10 | InterSystems10 | InterSystems

New SQL Development Motto

The Hippocratic oath:

Do no harm.

11 | InterSystems11 | InterSystems

Frozen Plans

Starting in 2016.2 you have the ability to Freeze a query plan.

A frozen plan will not be changed by:

Cache Upgrade,

TuneTable,

Cached Query Purge,

Class Compilation,

New Indices,

……

It is possible a frozen plan will become invalid, for example if an index is deleted.

The plan will be unfrozen.

A new plan will be generated.

An error will be recorded in the Statement index.

This is all invisible to the user.

12 | InterSystems12 | InterSystems

DPV4838 – 2017.1 and up
Option for an SQL Statement

- Unfrozen

Unfrozen means the query plan will be newly determined by the query optimizer when the statement is

prepared/compiled. The is the default plan state when a statement is first prepared/compiled.

- Frozen/Explicit

Frozen/Explicit means this query plan was frozen by an explicit request, not by a prepare/compile after an

upgrade. Someone clicked the "Freeze Plan" button in the SQL Statement Details screen in the

Management Portal, or called $SYSTEM.SQL.FreezePlan() to explicitly freeze the plan for this statement.

- Frozen/Upgrade

Frozen/Upgrade means this query plan was frozen because it was prepared/compiled under a version newer

than the version plan was originally created in. For example, suppose this statement was prepared/compiled

under version 2016.2. Then you upgrade to version 2017.1, and the statement is prepared/compiled again.

The system will detect this is the first prepare/compile of the statement on the new version, and

automatically mark the plan state as Frozen/Upgrade and use the existing plan for the new prepare/compile.

This ensures the query plan used is no worse than the plan of the previous version.

13 | InterSystems13 | InterSystems

MAK4642 – 2017.2 and up
Detect if a frozen plan is different to the current plan

In the SQL statement index table a new column was added to show if the frozen plan is

different from the un-frozen plan, this only applies to queries where the plan is frozen.

In the SQL statement detail page also display this 'frozen plan is different from current plan'

flag. Also there is a button to force a manual check of this statement.

A nightly task will review frozen plans to see if a different plan would be generated for that

Statement.

Users can run the query adding the hint, %NOFPLAN to the SELECT clause of the query to

see how the new plan will perform.

14 | InterSystems

Cache Upgrade Strategy

15 | InterSystems

Current Upgrading Techniques

Best: Full test upgrade on a system with representative data.

Good: Export Query Plans, test upgrade, Export Query

Plans, diff.

OK: Upgrade, test some queries, have snapshot to revert

back to.

Bad: Upgrade and go. Call Support if there are problems.

Worse: Upgrade and try to fix all problems and never call

Support. Complain loudly.

Worst: Upgrade. Set computer on fire if there are problems.

Cry yourself to sleep.

16 | InterSystems16 | InterSystems

DPV4838 – 2017.2 and up
Implement automatic freeze of query plans on upgrade

In version 2016.2, we added the ability to record SQL statement plans in

the statement index, and the ability to freeze a statement plan.

With this change, we further enhance this capability to automatically freeze

statement plans upon upgrade. The goal of this change is that the upgrade

procedure will make your queries run no slower than they did in the

previous version.

The version differences only take into account major.minor versions.

Upgrading from 2016.2.* to 2016.3.* will be detected as a version change.

Upgrading a maintenance release level, say from 2016.3.1 to 2016.2.3, is

not considered a version change for a plan version.

17 | InterSystems17 | InterSystems

What will Happen Now?

This means that any customer doing an upgrade where the old system is on 2016.2

or higher WILL NOT SEE ANY SQL CHANGES on upgrade.

The customer will need to manually go in and unfreeze the plans to get any new

optimizations from the new version.

Good News: There should be no more calls from customer crying that they did an

upgrade and the SQL is all slow now.

Bad News: Many customers will not know about this new behavior and will continue

to run the old plans and not get the benefits of the new version.

18 | InterSystems18 | InterSystems

New Support Options

Now when you are working on a performance problem and you want to reproduce

what the customer is seeing you can ask them to freeze the SQL Statement and

export it for you.

You will still need to get all the classes and clean them and ………. (go to Patrick’s

SQL Stats class for help with that)

If you make changes and want the customer to test your new version you can send

them back the statement in its’ new form and know that they are testing the plan you

want them to.

19 | InterSystems

© InterSystems Corporation. All rights reserved.

19 | InterSystems

Questions

Frozen Plans

20 | InterSystems

%Parallel Queries

21 | InterSystems

2016.2: Parallelization Improvements

%Parallel allows for multiple jobs to work on a singular query

Good for “big” queries, aggregates, UNION/OR, memory work

 SELECT … FROM %PARALLEL …

 Makes queries faster by using more resources

 Sometimes all the resources

 You can turn your query in to a monster

21

22 | InterSystems22 | InterSystems

The Query

SELECT Color, COUNT(SpikeCount) As "Total Spikes"

FROM SQLUser.Widget

WHERE Color like ‘S%'

GROUP BY Color

23 | InterSystems23 | InterSystems

The Normal Plan
<cost value="11188"/>

Call module B, which populates temp-file A.

Read temp-file A, looping on the hashing subscript.

For each row:

Output the row.

<module name="B">

Read index map SQLUser.Widget.ParellelPerfection, looping on %SQLUPPER(Color) (with a

%STARTSWITH range condition), SpikeCount, and ID.

For each row:

Check distinct values for %SQLUPPER(Color) using temp-file A,

subscripted by a hashing of these values.

For each distinct row:

Add a row to temp-file A, subscripted by the hashing,

with node data of SpikeCount and %SQLUPPER(Color).

Update the accumulated count(SpikeCount) in temp-file A,

subscripted by the hashing.

</module>

24 | InterSystems24 | InterSystems

The Numbers

Row count: 3

Performance:

23.701 seconds

1,878,068 global references

84,507,872 lines executed

0 disk read latency (ms)

Color Total Spikes

SALMON 626280

SARCOLINE 625105

SMARGADINE 626524

25 | InterSystems25 | InterSystems

The %Parallel Query

SELECT Color, COUNT(SpikeCount) As "Total Spikes"

FROM %PARALLEL SQLUser.Widget

WHERE Color like ‘S%’

GROUP BY Color

26 | InterSystems26 | InterSystems

The %Parallel Plan

<cost value="11188"/>

Process query in parallel, partitioning index map SQLUser.Widget.ParellelPerfection into

subranges of %SQLUPPER(T1.Color) values, piping results to temp-file A:

SELECT count(T1.SpikeCount),%SQLUPPER(T1.Color)

FROM %NOPARALLEL SQLUser.Widget T1

WHERE ((%SQLUPPER(T1.Color) LIKE (%SQLUPPER(?))))

GROUP BY %SQLUPPER(T1.Color)

Read temp-file A, looping on a counter.

For each row:

Output the row.

27 | InterSystems27 | InterSystems

The Numbers

Row count: 3

Performance:

11.528 seconds

1,878,384 global references

84,516,753 lines executed

0 disk read latency (ms)

Color Total Spikes

SALMON 626280

SARCOLINE 625105

SMARGADINE 626524

28 | InterSystems28 | InterSystems

The guts

s %cur0188d(8)=##class(%SQL.Agent).%RunWork($name(^User.WidgetI("ParellelPerfection")),

$s(%cur0188d(6)=$c(0):"",1:%cur0188d(6)),"",

$system.Rtn.GetCurrent(),

"$$%0AmBm2l1t",$lb(),

1)

%0AmCk1 for {

try { s %cur0188d(10)=%cur0188d(8).Get(20) }

catch { i '$isobject($g(%cur0188d(8))) { s %cur0188d(9)="" g %0AmCdun q } throw }

i $l(%cur0188d(10)) q

i %cur0188d(8).SQLDecode() { s %cur0188d(9)="" k %cur0188d(8) g %0AmCdun q

}

}

Set %cur0188d(11)=$lg(%cur0188d(10)),%cur0188d(12)=$lg(%cur0188d(10),2)

29 | InterSystems29 | InterSystems

Guts of the Guts – How many jobs will my query use?

##class(%SQL.Agent).%RunWork() calls: $$calcJobs^%SYS.WorkQueueMgr()

To get the number of jobs. calcJobs looks at:

$zu(204,4) – number of CPUs

$zu(204,5) – number of cores

Global $g(^%SYS("Compiler","MultiCompileMax") ,32) if set for max

number of process it can use

Global ^%ISCWorkQueue("Jobs",0) to see how many active worker jobs

are on the system already

Based on all that info it will return the number of jobs to start up, somewhere

between 2 and 32 would be the default.

30 | InterSystems30 | InterSystems

More Guts

When a Parallel Query is generated we will produce 2 SQL queries, the one the

user wrote and the one the parallel processes will run. You can see the second

query in the Show Plan.

SELECT count(T1.SpikeCount),%SQLUPPER(T1.Color)

FROM %NOPARALLEL SQLUser.Widget T1

WHERE ((%SQLUPPER(T1.Color) LIKE (%SQLUPPER(?))))

GROUP BY %SQLUPPER(T1.Color)

The place to start looking for the first query will still be %0Afirst. For the second

query you should start at %0Bfirst.

With embedded SQL the names might be different as one routine and have a bunch

of SQL statements and the tags will use the cursor name to be unique.

31 | InterSystems31 | InterSystems

Debugging What Happened

Adding a line of debugging to the generated INT code we can see what the 4 different jobs did.

%0Bfirst

s ^bjb("%Parallel",$I(^bjb))=$LB($g(start),$g(end))

After running the query I have the following global

EUROWITS2017>zw ^bjb

^bjb=4

^bjb("%Parallel",1)=$lb(" RED"," SALMON")

^bjb("%Parallel",2)=$lb(" SALMON"," SARCOLINE")

^bjb("%Parallel",3)=$lb(" SARCOLINE"," SMARGADINE")

^bjb("%Parallel",4)=$lb(" SMARGADINE"," YELLOW")

We start a little early, “ RED” and we end a little late, “ YELLOW” but this is based on the disk

blocks, the generated code is still testing WHERE Color LIKE ‘S%’

32 | InterSystems

© InterSystems Corporation. All rights reserved.

32 | InterSystems

Questions

%Parallel Queries

33 | InterSystems

© InterSystems Corporation. All rights reserved.

33 | InterSystems

Frozen Plans and Parallel Queries

