
Optimizing SQL Performance (2015)
Brendan Bannon – Support Manager

3 most important things in real estate?

• ?

• ?

• ?

3 most important things in real estate?

• Location

3 most important things in real estate?

• Location

• Location

3 most important things in real estate?

• Location

• Location

• Location

Three most important things for optimizing Cache SQL?

•TuneTable

• TuneTable

•TuneTable

TuneTable - ExtentSize

• The ExtentSize value for a table is simply the number of rows
(roughly) stored within the table.

• Used by query Optimizer to determine order of tables.

• Larger ExtentSize means larger Query Cost.

TuneTable - Selectivity

• The Selectivity value for a column is the percentage of rows
within a table that would be returned as a result of query
searching for a typical value of the column.

• Used by the Query Optimizer to help select what indices should
be used.

• 1 is the best selectivity value, fields defined a Unique.

• All other field Selectivities are expressed as a percentage, the
lower the percentage the better.

TuneTable

• When calculating Selectivity for a property we now keep

track of how often different values come up. If one value is

statistically very different from the rest it is an outlier. For

example, in this app 99.5747% of all problems are closed

so that value would be an outlier for Problem Status. This

means the optimizer might generate a different plan for:

WHERE Status = (‘Closed’)

As apposed to:

WHERE Status = ‘Open’

New Feature - Outlier Selectivity

TuneTable

From the Storage of User.Problem

<Property name="Status">

<OutlierSelectivity>.995747:"Closed"</OutlierSelectivity>

<Selectivity>0.2118%</Selectivity>

</Property>

New Feature - Outlier Selectivity

TuneTable

SELECT * FROM SQLUser.Problem WHERE Status =

('Closed')

cost value=31109040

Read master map SQLUser.Problem.IDIndex, looping on ID.

For each row:

Output the row.

New Feature - Outlier Selectivity

TuneTable

SELECT * FROM SQLUser.Problem WHERE Status = 'Open'

cost value=248606

Call module B, which populates temp-file A.

Read temp-file A, looping on ID.

For each row:

Read master map SQLUser.Problem.IDIndex, using the given idkey value.

Output the row.

Module B

Read index map SQLUser.Problem.Work, using the given %SQLUPPER(Status), and

looping on %SQLUPPER(Priority), ProblemOwner, and ID.

For each row:

Add a row to temp-file A, subscripted by ID,

with no node data.

New Feature - Outlier Selectivity

TuneTable

• In addition to calculating ExtentSize and Selectivity TuneTable

will now also count the number of blocks a map will take up on

disk

• If TuneTable is not run then the class compiler will still put in an

estimated value for the Block Count

• The size of all Caché SQL map blocks is 2048 bytes (2K bytes)

• Run on Local Databases

New Feature – Block Count

TuneTable

SAMPLES>d $SYSTEM.SQL.TuneTable("GS.Outliers",1,1)

TABLE: GS.Outliers:

EXTENTSIZE:

CURRENT = 500000

CALCULATED = 500001

SAMPLESIZE 2121 Table & Class Definition Updated.

…

BLOCKCOUNT of MAP IDKEY

CURRENT = 14728

MEASURED = 14728

BLOCKCOUNT of MAP SalaryIndex

CURRENT = 9667

MEASURED = 2188 Table & Class updated

New Feature – Block Count

TuneTable

• Run TuneTable on ALL your tables.

• You only need to run TuneTable once, on a good database.

• Tables will generally grow relative to one another so as the DB
grows there is no need to rerun TuneTable

• Test query performance after running TuneTable.

• Ship tables with default ExtentSize and Selectivity.

Indices

Indices

• Very fast

• Compact – we store 64,000 IDs per global node

• Uses bit math with multiple indices

• Use when you have < 10,000 distinct values

• No performance hit for INSERT, UPDATE or DELETE

• Performance can slow on volatile systems (large number of

INSERTs and DELETEs)

Bitmap - ^My.ClassI(“Gender”,value,chunk)=“bit string”

Indices

• Special case of a bitmap

• No sort field

• Just chunks of IDs

• Used for COUNT(*) and some JOINs

Bit Extent - ^My.ClassI(“$Class”,chunk)=“bit string”

Indices

• Flexible

• No restriction on distinct values

• Can have extra data

• One global node per indexed value

• Will not degrade over time

Standard - ^My.ClassI(“AccountNum”,value,ID)=“data”

Indices

• Very fast aggregate calculations

• Instead of storing a number we convert to binary and store the

bits

• Much more expensive than Bitmaps or Standard indices

• Currently limited usage in Caché SQL

Bit slice - ^My.ClassI(“Salary”,Binary 1,chunk)=“bit string”

^My.ClassI(“Salary”,Binary 2,chunk)=“bit string”

…

^My.ClassI(“Salary”,Binary n,chunk)=“bit string”

Indices

• Caché has the ability to use multiple indices from one table to

resolve a query.

• For the following query what is the best Index?

SELECT Name

FROM SQLUser.Employee

WHERE Deleted = 0

AND NASCLeader = 1

Multi Index Solutions

Indices

• The fastest way to resolve this query would be with a Compound

Index

• Index SuperFast On (NASCLeader, Deleted) [Data = Name];

Row count: 5 Performance: 0.002 seconds 69 global references

Read index map SQLUser.Employee.SuperFast, using the given

NASCLeader and Deleted, and looping on ID.

For each row:

Output the row.

Multi Index Solutions

Indices

• The most flexible solution is to define 2 bitmaps:

Index Bitmap1 On NASCLeader [Type = bitmap];

Index Bitmap2 On Deleted [Type = bitmap];

Row count: 5 Performance: 0.002 seconds 71 global references

Generate a stream of idkey values using the multi-index combination:

((bitmap index SQLUser.Employee.Bitmap1)

INTERSECT (bitmap index SQLUser.Employee.Bitmap2))

For each idkey value:

Read master map SQLUser.Employee.Emp, using the given idkey

value.

Output the row.

Multi Index Solutions

Bitmap Performance

Why is my Bitmap slowing down?

• One global node contains bits for 64,000 rows of a table

• One node takes up to 8K

• When you DELETE 1 row we change 1 bit to 0

• When all the bits in a chunk 0 the node is no longer needed

• When a query is looking for a defined row we need to look at all

these zero chunks for a 1

• These zero chunks build up for every distinct value that is part of

a Bitmap

Compacting Bitmaps

• New in Cache 2014.2

• This utility can be run on a live system

• Will compact or remove bitmap nodes

• Needs to be run against local databases

• Methods:

– d ##class(%SYS.Maint.Bitmap).Namespace("Samples",1,1,"2014-01-

17 09:00:00")

– d ##class(%SYS.Maint.Bitmap).OneClass("BitMap.Test",1,1)

%SYS.Maint.Bitmap

Compacting Bitmaps
SAMPLES>d ##class(GS.Compact).Populate(1000000)

Global - GS.CompactI Blocks - 34 Bytes - 250,901

1. DELETE FROM GS.Compact WHERE ID < 750000

Global - GS.CompactI Blocks - 46 Bytes - 344,747

SAMPLES>d ##class(%SYS.Maint.Bitmap).OneClass("GS.Compact",1,1)

Class: GS.Compact Start Time: 2014-03-13 14:45:29

Global: ^GS.CompactI("$Compact") was compressed: 93.87 %

Global: ^GS.CompactI("GenderIdx") was compressed: 70.48 %

Compression time in seconds: 0

Global - GS.CompactI Blocks - 12 Bytes - 80,066

Show Plan

Show Plan – Things we don’t like

• Bad

Read index map DatesRUs.Profile.CustomerPointerIndex, looping
on CustomerPointer and ID

• Add a row to temp-file A, subscripted by %SQLUPPER(Name)

and ID, with node data of Name.

• The worst

Read master map DatesRUs.Employee.IDKEY, looping on ID

Show Plan – Things we like

• Good

Read index map DatesRUs.Customers.NameIndex, using the given
%SQLUPPER(Name) and ID

• Better

(((bitmap index DatesRUs.Profile.EyeI) INTERSECT (bitmap index
DatesRUs.Profile.GenderI)) INTERSECT (bitmap index
DatesRUs.Profile.ActiveI))

Examples

Table Scans

SELECT name FROM DatesRUs . Employee WHERE Active =
1 ORDER BY Name

Time in Module MAIN = 0.029

Module Execution Count = 4

Global References = 82,597

Commands Executed = 83,028

Number of Rows = 3

Read master map DatesRUs.Employee.IDKEY, looping on ID.

For each row:

Add a row to temp-file A, subscripted by %SQLUPPER(Name) and

ID,

with node data of Name.

Table Scans – What’s wrong?

• 82,000 global refs to return 3 rows.

• SELECT COUNT(*) from DatesRUs.Employee returns 105 rows.

• What is causing all the extra work?

Table Scans – Problems

• DatesRUs.Employee Extends DatesRUs.Person so all the
employees are stored in the same global as Person. (and
DatesRUs.Customer)

• No Index on Active.

 Standard or Bitmap index?

Table Scans

• New Index

Index ActiveNames On (Active,Name) [Data = Name];

Time in Module MAIN = 0.000

Module Execution Count = 4

Global References = 34

Commands Executed = 306

Number of Rows = 3

Read index map DatesRUs.Employee.ActiveNames, using the given

Active, and looping on %SQLUPPER(Name) and ID.

For each row:

Output the row.

Multi Index Solution

SELECT ID, Description

FROM DatesRUs.Profile

WHERE Active=1

and (Gender = :sex or :sex IS NULL)

AND (Eye = :eye OR :eye IS NULL)

AND (Hair = :hair OR :hair IS NULL)

And (Hobbies %INLIST :hobby or :hobby IS NULL)

Multi Index Solution

• Only have conditions in the WHERE that the user provided a
value, greatly simplifies the query

SELECT ID, Description

FROM DatesRUs.Profile

WHERE Active=1 AND Gender = :sex

AND Eye = :eye AND Hair = :hair

AND Hobbies %INLIST :hobby

One Compound Index Vs. Several simple Indices

• One Compound with several subscripts.

 Index Compound On (Active, Hair, Eye, Gender);

 Fastest option for specific query

 Least flexible

• Read index map DatesRUs.Profile.Compound, using the
given Active, %SQLUPPER(Hair), %SQLUPPER(Eye), and
%SQLUPPER(Gender), and looping on ID.

One Compound Index Vs. Several simple Indices

• Individual bitmaps for each field

 Index GenderIndex On Gender [Type = bitmap];
Index HairIndex On Hair [Type = bitmap];
Index EyeIndex On Eye [Type = bitmap];
Index ActiveIndex On Active [Type = bitmap];

Almost as fast for specific query

Much more flexible for other queries

• ((((bitmap index DatesRUs.Profile.EyeIndex)
INTERSECT (bitmap index DatesRUs.Profile.HairIndex))
INTERSECT (bitmap index
DatesRUs.Profile.GenderIndex)) INTERSECT (bitmap
index DatesRUs.Profile.ActiveIndex))

Table Joins

SELECT C2.Name, S.Comments, S.Rating

FROM DatesRUs.Customers C1

JOIN DatesRUs.Survey S ON C1.ID = S.SurveyOf

JOIN DatesRUs.Customers C2 ON C2.ID = S.SurveyBy

WHERE C1.Name = 'Adam,Alice J.‘

Time in Module MAIN = 1.951

Module Execution Count = 109

Global References = 153,000

Commands Executed = 3,100,851

Number of Rows = 108

• Read master map DatesRUs.Survey.IDKEY, looping on
ID.

Table Joins

• Add index to support JOIN

Index SurveyOfIndex On SurveyOf;

Time in Module MAIN = 0.061

Module Execution Count = 107

Global References = 859

Commands Executed = 9,384

Number of Rows = 106

• Read index map DatesRUs.Customers.NameIndex,
using the given %SQLUPPER(Name), and looping on ID.

Location?

Now what about that house?

TuneTable

• Assumes

– Evenly distributed data

– All values equally likely

TuneTable - Evenly Distributed Data

SELECT Status, COUNT(*)

FROM DatesRUs.Customers

GROUP BY Status

Status Count

Available 27

Closed 450

Dating 17

Married 6

TuneTable – All Values Equally Likely

• The property Status has 4 values: Available, Closed, Dating and
Married

• For our application are these Equally likely?

• Status has a Selectivity of 16%, is that reflective of how we will
be using it?

TuneTable – Modify Selectivity by Hand

• Change Selectivity from

– The Portal

– Studio – View Storage

• Set Property Parameter CalcSelectivity = 0

Questions?

