Make Applications More Valuable

Introduction to Indexing

Brendan Bannon
Support Manager

Innovations by InterSystems

Agenda

1. The Basics

2. Tune Table

3. Indices

Standard
Bitmap

Extent

Bitslice
BuildValueArray

bk owbdE

Innovations by InterSystems

2. The Basics

* Query speed is almost always constrained by disk 1/O
speed, not cpu or network

— Disk can be 1000 times slower than cpu operation
* Cache SQL tuning and optimizer are based on that

* 95/5 Rule: Worry about the 5% of queries that you use
very often and are slow, not the 95%

Innovations by InterSystems

3. Tune Table : Why?

* TuneTable generates statistics on your tables that are
used by the Query Optimizer to pick the best query path:

— The size of one table compared to another.
» “ExtentSize”

— How selective an index is for a given property.
» “Selectivity”
* Which is better to use when querying
... where Patient.Sex="M" and Doctor.Zip=91521...
— Sex index of Patients
— Zip index of Doctors

Innovations by InterSystems

Tune Table : How?

* How to run TuneTable?
— Use $SYSTEM.SQL.TuneTable()

— Use TuneTable from the SQL Manager/System
Management Portal.

— Set Selectivity and ExtentSize manually.

Innovations by InterSystems

* Having good statistics for table cardinality and column
cardinalities is crucial for the Optimizer.
* When/How Often?

— As soon as you have a stable database design and
some representative data

— When you get your first ‘real’ database

— If you install at a site with atypical data distributions
— If you think data ratios have changed a lot

— Before calling ISC Support !

— (Not needed) just because DB has grown larger

Innovations by InterSystems

5. Indices

* Most of “Tuning’ is about Indices:
— Define the right indices
— Make sure the queries use them correctly

* Indices are used for
— Fast Access Paths (minimize disk access)
— Selection criteria (WHERE ...)
— Table JOINs
— Grouping results (GROUP BY, ORDER BY)

Innovations by InterSystems

Query Tuning - Indices

* Why is Index search better?
— Data is sorted in known order
— Size of index is smaller than data map
— More rows in memory at same time
— Less I/O than a table scan of data map

— If you can make your query access ONLY the index,
it will be very fast

Innovations by InterSystems

Types of Cacheé Indices

* Standard
— Unique
— IDKey
— SQL Primary Key
— Compound
* Bitmap
* Extent

* Bitslice

Innovations by InterSystems

Standard Index

* In a standard index you can also store additional
Information as data in the global.

* Example:
— Property Name as %String;
— Index Nldx On Name [Data = Name |,

* Stored:
~User.PI("Nldx"," KRATZ,SAM S.",2)=$LB(,Kratz,Sam S.)
~User.PI("Nldx"," MALKO,ELVIRA E.",3)=$LB(,Malko,Elvira E.)
* Used:
Select Name from P where Name %Startswith ‘KR’

Innovations by InterSystems

Types of Standard Indexes

* Unique — Used to make sure that each row has a unique
value for a given field or combination of fields.

* ID Key — The field is unique, collation is Exact, and it is
add only. This is the value we use to retrieve a row from
the disk.

* SQL Primary Key — Projected to SQL tools as the
Primary key, must be Unique, can be changed on an
UPDATE.

Innovations by InterSystems

Bitmap Index

* Uses a series of bit strings to represent the set of ID Key
values that correspond to a given indexed value.

* Does not support additional data storage, there is no place to
put it!
* This is what the global looks like for a Bitmap Index:

ld 2> 0123456789...

AUser.PI("Bossldx"," LAROCCA,DANIEL Y.",1)=$BIT(00100101111101111011)
AUser.PI("Bossldx"," LUBBAR,JOHN X.",1)= $BIT(01011010000010000100)

Innovations by InterSystems

Bitmap vs. Standard Index

* Bitmap index is NOT slow to update, in fact it can be
faster (smaller)

* Bitmap index only if IDKey is positive Integer

* ISC Rule of Thumb: If you have less than 10,000 distinct
values you should bitmap. But ...

* There are some things Bitmaps are very good for.
— SELECT Count....
— complex WHERE clause with AND and OR

Innovations by InterSystems

Bit Extent

* A bit Extent is a special bitmap.

* Instead of a bit string for the different values of a field it has
one bit string for the whole table.

* |fabitis 1 the row is defined.
* |f the bit is 0 the row was deleted.

* Automatically maintained with Cache Storage if there are
any bit-map indices

AUser.PI(“$Person",1)=%BIT(01011011111111111101)

[records 2, 5 and 18 have been deleted]
Innovations by InterSystems

Bitslice Index

* A way to index numbers so that they can be summed or
averaged quickly. (SUM, AVE)

* Defined in Studio
— Index Pldx On Price [Type = bitslice |;

* Cache will update. The value is broken down into its
binary value and then indexed on each bit of that value.

— Data:

« AUser.BSD(1) = {*Yang,Nellie H."3}

« AUser.BSD(2) = {*Chadwick,Usha U."4}
— Bitslice Index:

« N(Pldx,1,1) = 01011100011000000000000000000...
- APldx,2,1) =01000110100000000000000000000...
« N(Pldx,3,1) = 00100001010000000000000000000... ns

Using Bitslice Index

* Bitslice indices should be used to solve very specific
problems.

Slower on INSERT UPDATE and DELETE.

SQL will use for some queries (more later)
- Select SUM(Amount) from Orders

* You can use bitslice indices in your Cache Script

Innovations by InterSystems

BuildValueArray

* Indexing on Lists and Arrays
— Class
Property FavoriteColors As list Of %String;
Index Color On FavoriteColors(ELEMENTS);
* (Needs Delimited Identifiers)
— Query

SELECT Name,FavoriteColors FROM Person
WHERE FOR SOME %ELEMENT (FavoriteColors)

(%0Key=2 and %Value = 'Red’)

— Returns rows where ‘Red’ is the second color
 FavoriteColors returns as $Ib(value,value,...)

— Roll-your-own multi-valued index from any Property
» See BuildVvalueArray

Innovations by InterSystems

Compound Index

* When defining an index you can base it on one or more
fields.

* QOrder is important.

Index NameSexIndex On (Name, Sex);
Is not the same as:
Index SexNamelndex On (Sex, Name);

Innovations by InterSystems

Compound Indices

* If you have a query where the only restriction for a table is
the AND of two or more ranges.
* The order of the columns in the index can be important.

— Example: Two date columns d1 and d2 with conditions
dl<?Andd2>7?.

« Both parameters are recent dates.

« Compound Index on (d1,d2), the d1 condition will
read most of the index while the d2 condition will
only read a small amount.

* [t would be much better to have the index be (d2,d1)
rather than (d1,d2)

Innovations by InterSystems

Multl Index Solution

* Caché supports the use of 2 indices to resolve one query.
— This reduces the need for a Compound index.

— Two indices, one on Name and one on Gender will
yield results almost as fast as a Compound index on
Name and Gender

— Two single indices are more flexible than one
Compound index : reusable.

* For both Standard and Bitmap indices

* Can often replace Compound Indices with multiple simple
Indices, standard or (better) bitmap

Innovations by InterSystems

Indices — How Many ?

* As many as you would like
— (but not more than you need)

* Don’t be afraid of indices, Cache loves them

Innovations by InterSystems

