
Introduction to Indexing

Brendan Bannon

Support Manager

Agenda

1. The Basics

2. Tune Table

3. Indices

1. Standard

2. Bitmap

3. Extent

4. Bitslice

5. BuildValueArray

2. The Basics

• Query speed is almost always constrained by disk I/O
speed, not cpu or network

– Disk can be 1000 times slower than cpu operation

• Cache SQL tuning and optimizer are based on that

• 95/5 Rule: Worry about the 5% of queries that you use
very often and are slow, not the 95%

3. Tune Table : Why?

• TuneTable generates statistics on your tables that are
used by the Query Optimizer to pick the best query path:

– The size of one table compared to another.

• “ExtentSize”

– How selective an index is for a given property.

• “Selectivity”

• Which is better to use when querying

• … where Patient.Sex=“M” and Doctor.Zip=91521…

– Sex index of Patients

– Zip index of Doctors

Tune Table : How?

• How to run TuneTable?

– Use $SYSTEM.SQL.TuneTable()

– Use TuneTable from the SQL Manager/System
Management Portal.

– Set Selectivity and ExtentSize manually.

TuneTable : When?

• Having good statistics for table cardinality and column
cardinalities is crucial for the Optimizer.

• When/How Often?

– As soon as you have a stable database design and
some representative data

– When you get your first ‘real’ database

– If you install at a site with atypical data distributions

– If you think data ratios have changed a lot

– Before calling ISC Support !

– (Not needed) just because DB has grown larger

5. Indices

• Most of ‘Tuning’ is about Indices:

– Define the right indices

– Make sure the queries use them correctly

• Indices are used for

– Fast Access Paths (minimize disk access)

– Selection criteria (WHERE …)

– Table JOINs

– Grouping results (GROUP BY, ORDER BY)

Query Tuning - Indices

• Why is Index search better?

– Data is sorted in known order

– Size of index is smaller than data map

– More rows in memory at same time

– Less I/O than a table scan of data map

– If you can make your query access ONLY the index,

it will be very fast

Types of Caché Indices

• Standard

– Unique

– IDKey

– SQL Primary Key

– Compound

• Bitmap

• Extent

• Bitslice

Standard Index

• In a standard index you can also store additional
information as data in the global.

• Example:

– Property Name as %String;

– Index NIdx On Name [Data = Name];

• Stored:

^User.PI("NIdx"," KRATZ,SAM S.",2)=$LB(,Kratz,Sam S.)

^User.PI("NIdx"," MALKO,ELVIRA E.",3)=$LB(,Malko,Elvira E.)

• Used:

Select Name from P where Name %Startswith ‘KR’

Types of Standard Indexes

• Unique – Used to make sure that each row has a unique
value for a given field or combination of fields.

• ID Key – The field is unique, collation is Exact, and it is
add only. This is the value we use to retrieve a row from
the disk.

• SQL Primary Key – Projected to SQL tools as the
Primary key, must be Unique, can be changed on an
UPDATE.

Bitmap Index

• Uses a series of bit strings to represent the set of ID Key
values that correspond to a given indexed value.

• Does not support additional data storage, there is no place to
put it!

• This is what the global looks like for a Bitmap Index:

Id  0123456789…

^User.PI("BossIdx"," LAROCCA,DANIEL Y.",1)=$BIT(00100101111101111011)

^User.PI("BossIdx"," LUBBAR,JOHN X.",1)= $BIT(01011010000010000100)

Bitmap vs. Standard Index

• Bitmap index is NOT slow to update, in fact it can be
faster (smaller)

• Bitmap index only if IDKey is positive Integer

• ISC Rule of Thumb: If you have less than 10,000 distinct
values you should bitmap. But …

• There are some things Bitmaps are very good for.

– SELECT Count….

– complex WHERE clause with AND and OR

Bit Extent

• A bit Extent is a special bitmap.

• Instead of a bit string for the different values of a field it has
one bit string for the whole table.

• If a bit is 1 the row is defined.

• If the bit is 0 the row was deleted.

• Automatically maintained with Cache Storage if there are
any bit-map indices

^User.PI(“$Person",1)=$BIT(01011011111111111101)

[records 2, 5 and 18 have been deleted]

Bitslice Index

• A way to index numbers so that they can be summed or
averaged quickly. (SUM, AVE)

• Defined in Studio

– Index PIdx On Price [Type = bitslice];

• Cache will update. The value is broken down into its
binary value and then indexed on each bit of that value.

– Data:
• ^User.BSD(1) = {^Yang,Nellie H.^3}

• ^User.BSD(2) = {^Chadwick,Usha U.^4}

– Bitslice Index:
• ^(PIdx,1,1) = 01011100011000000000000000000...

• ^(PIdx,2,1) = 01000110100000000000000000000…

• ^(PIdx,3,1) = 00100001010000000000000000000...

Using Bitslice Index

• Bitslice indices should be used to solve very specific
problems.

• Slower on INSERT UPDATE and DELETE.

• SQL will use for some queries (more later)

– Select SUM(Amount) from Orders

• You can use bitslice indices in your Cache Script

BuildValueArray

• Indexing on Lists and Arrays

– Class

Property FavoriteColors As list Of %String;

Index Color On FavoriteColors(ELEMENTS);

• (Needs Delimited Identifiers)

– Query

SELECT Name,FavoriteColors FROM Person
WHERE FOR SOME %ELEMENT(FavoriteColors)

(%Key=2 and %Value = 'Red')

– Returns rows where ‘Red’ is the second color

• FavoriteColors returns as $lb(value,value,…)

– Roll-your-own multi-valued index from any Property

• See BuildValueArray

Compound Index

• When defining an index you can base it on one or more
fields.

• Order is important.

Index NameSexIndex On (Name, Sex);

Is not the same as:

Index SexNameIndex On (Sex, Name);

Compound Indices

• If you have a query where the only restriction for a table is
the AND of two or more ranges.

• The order of the columns in the index can be important.

– Example: Two date columns d1 and d2 with conditions
d1 < ? And d2 > ? .

• Both parameters are recent dates.

• Compound Index on (d1,d2), the d1 condition will
read most of the index while the d2 condition will
only read a small amount.

• It would be much better to have the index be (d2,d1)
rather than (d1,d2)

Multi Index Solution

• Caché supports the use of 2 indices to resolve one query.

– This reduces the need for a Compound index.

– Two indices, one on Name and one on Gender will
yield results almost as fast as a Compound index on
Name and Gender

– Two single indices are more flexible than one
Compound index : reusable.

• For both Standard and Bitmap indices

• Can often replace Compound Indices with multiple simple
indices, standard or (better) bitmap

Indices – How Many ?

• As many as you would like

– (but not more than you need)

• Don’t be afraid of indices, Cache loves them

