
FIGHTING IMPEDANCE MISMATCH
AT THE DATABASE LEVEL

A Technical White Paper by:

Mary A. Finn

Product Marketing Manager

InterSystems Corporation

Introduction

With the maturation and wide acceptance of
Java, object-oriented programming has moved to the
foreground of the application development land-
scape. Because of their rich data models and support
for productivity-enhancing concepts such as encap-
sulation, inheritance, and polymorphism, object
technologies like Java, C++, and COM, are favored
by today's application developers.

However, much of the world's data still resides
in relational databases. Developers of database
applications (that is, any application that accesses
stored data) often find themselves fighting imped-
ance mismatch: the inherent disconnect between the
object and relational data models. Efforts to "map"
relational data into a usable object format are often
detrimental to both programmer productivity and
application performance.

However, impedance mismatch can be miti-
gated by the proper choice of database technology.
This paper defines impedance mismatch and gives
two simple examples of how it affects application
development. It then discusses, with regards to
impedance mismatch, the pros and cons of three
kinds of database: relational, object, and Caché, the
multidimensional database from InterSystems.

Understanding impedance mismatch

Impedance mismatch is a term borrowed from
electrical engineering, but in the software world it
refers to the inherent difference between the rela-
tional and object data models.

Very simply put, the relational model organizes
all data into rows and columns. Every row represents
a record, and the columns represent the various data
items in a record. If the data is too complex to be
described by a two-dimensional grid, additional
tables are created to hold "related" information.
Thus, every table in a relational schema will hold
some, but not all, of the data items for a great many
records.

The object data model is not constrained to
keeping data in rows and columns. Instead, the
developer creates a definition – a template – that
completely describes a certain class of information.
Every record (object) is a specific instance of that
class. Thus each object contains all the data items for
one, and only one, record. But that's not all. Class
definitions may also include pieces of code, called
methods, which act upon the data described by the
class. There is no analogous construct in the rela-
tional model.

A simple example

To illustrate the difference between the two
data models, assume that you are developing an
accounts receivable application. Your application
will undoubtedly need to keep track of a number of
invoices, each of which will have some header
information (such as the invoice date), an invoice
number, and one or more line items. Every line item
will include, among other things, information about
the product ordered, and the quantity of product
ordered.

One way of modeling the invoice in a relational
database is to create two tables. One table – called
Invoice – includes the header information that only
appears once on each invoice. Another table –
LineItems – contains columns for the
Invoice_Parent, Line_Item_Product_Code, and
Line_Item_Quantity. The first of these is especially
important because it is this value that "relates" the
line items to information in the Invoice table.

Note that neither table contains all the informa-
tion about any given invoice. Instead, each contains
some of the information about many invoices. If your
application is designed, for example, to print an
invoice, it must access both the Invoice and
LineItems tables for the header and detail informa-
tion respectively. Also note that the tables do not
contain any instructions about how to format the data
for printing. Those instructions exist outside the
database itself.

Fighting Impedance Mismatch at the Database Level
September 2001: Copyright © 2001 InterSystems Corporation. All Rights Reserved.

In the object model, data need not fit into rows
and columns, so the Invoice class definition will look
like a list of all the data items that make up an
invoice. There will be properties containing the
header information such as InvoiceDate,
InvoiceNumber, etc., and a collection of one or more
instances of the LineItem class. The LineItem class
includes the properties ProductCode and
LineItemQuantity.

Class definitions are merely blueprints of the
data format. Each individual invoice is one specific
instance of the invoice class, and contains the
specific instances of the LineItem class which belong
to it. Thus, every Invoice object contains all the
information for a given invoice, and only informa-
tion for that invoice.

But class definitions may also contain methods
that act upon the data described by the class. For
example, your Invoice class may include a Print()
method that dictates how to format invoice informa-
tion for printing. Persistent objects will include some
sort of Save() method that specifies how objects are
stored in the database. The default implementation of
the Save() method will be determined by the struc-
ture of the database engine, and provided by the
database vendor.

Impedance mismatch when manipulating
the database

Consider the case of creating a new invoice
with one line item in your accounts receivable
application. If you were programming against a
relational database, your code would look something
like that shown in Example #1. It would include two
Insert statements: one to add the header information
to the Invoice table, and another to add the detail
information to the LineItems table. Insert is a stan-
dard SQL command, and the relational database
vendor will provide for its implementation.

The code for saving an invoice with one line
item using an object model is shown in Example #2.
Except for syntax details, it looks quite similar to the
relational example. The main difference is that the
Save() method is only called once.

Example #1 :
Creating a new Invoice using
the relational model

If (flag="New") {

Insert Into Invoice

(Invoice_Date, Invoice_Number)

Values(Today,:NewInvoiceNumber)

Insert Into LineItems

(Invoice_Parent,Line_Item_Quantity,

Line_Item_Product Code)

Values(:NewInvoiceNumber,:Quantity,:ProdOrdered)

}

Example #2:
Creating a new invoice using the object model

If (flag="New") {

objInv=new Invoice()

objInv.InvoiceDate=Today

objInv.InvoiceNumber=NewInvoiceNumber

objLI=new ObjInv.LineItem()

objLI.LineItemQuantity=Quantity

objLI.ProductCode=ProdOrdered

objInv.Save()

}

Now imagine that you want to write the busi-
ness logic for your application in an object-oriented
language such as Java or C++, but you need to store
your data in a relational database. To accomplish this
for your invoice, the SQL Insert statements must be
programmed within the Save() method of your
Invoice class definition. Here is one manifestation of
impedance mismatch – an object class with a collec-
tion having to be translated to the disparate tables of
a relational database engine.

Impedance Mismatch in Design

Another form of impedance mismatch can crop
up during the application design process. In addition
to enabling a richer, more intuitive way of modeling
data, object technology encompasses several con-
cepts that significantly enhance programmer produc-
tivity. In particular, object technology supports the
concepts of inheritance and polymorphism.

Inheritance refers to the fact that one class
definition can be derived from another. For example,
in your accounts receivable application you might
create a generic InvoiceTemplate class, and have the
more specific SoftwareInvoice and HardwareInvoice
classes inherit properties and methods from
InvoiceTemplate. (They may also include non-
inherited properties and methods that are specific to
each class.) As the application evolves, if changes
are made to InvoiceTemplate, inheritance dictates
that those changes are automatically reflected in the
SoftwareInvoice and HardwareInvoice class defini-
tions.

Polymorphism refers to the fact that different
implementations of a method can share a common
interface. For example, the Print() method in
SoftwareInvoice and HardwareInvoice may include
different instructions for formatting, etc. However, to
print an invoice, your application only needs to load
an object into memory, and call its Print() method.
Thanks to polymorphism, the object will "know"
how to format itself for printing, depending on which
class it belongs to.

Neither inheritance nor polymorphism exist in
the relational model. Some large relational database
vendors such as Oracle, MicroSoft, and IBM have
attempted to implement object-oriented design
concepts, but the results generally fall short of the
capabilities expected by object programmers.

Approaches to Mitigating
Impedance Mismatch

The two examples of impedance mismatch
given above are very simplistic, but they serve to
demonstrate the problem. The work required to
"normalize" impedance mismatch can be significant,
and grows dramatically as application complexity
increases. However, the effects of impedance mis-
match can be substantially reduced by the proper
choice of database technology. Let's consider three
options for data storage: a relational database, a
"pure" object database, and the Caché multidimen-
sional database.

Using a relational database

This paper has already discussed how trying to
use a relational database with an application
grounded in object technology poses serious imped-
ance mismatch problems. But sometimes developers
don't have a choice. They may need to access exist-
ing data that resides in a relational database. In that
case, one option is to use an "object-relational
mapping" tool, whether it be a stand-alone tool, or
the mapping capabilities built in to some so-called
"object-relational" databases.

In essence, mapping tools create a file – a map
– that contains the code for translating between
objects and relational tables. Developers must
specify exactly how that translation is to be done,
that is, which object properties correspond to which
data columns in which tables, and vice versa. Once
created, the map is saved, and invoked every time the
application moves data to or from the database. Some
object-relational mapping tools provide a runtime
caching component to help counteract the perfor-
mance penalty introduced by translating data be-
tween objects and relational forms.

Aside from any runtime performance problems,
object-relational mapping can significantly slow
down application development. Most mapping tools
do not implement, or only partially implement,
object modeling concepts such as inheritance,
polymorphism, etc. Therefore, as an application is
adapted and modified, new, updated object-relational
maps must be created.

Developers battling the impedance mismatch
between object-oriented applications and relational
databases might want to consider migrating the data
into a more object-friendly data store. They must
weigh the one-time effort required to reformat and
transfer the data against the ongoing work and
performance losses of using an object-relational map.

Using an object database

At first glance, it would appear that impedance
mismatch can be totally eliminated by storing data in
a "pure" object database. That is – partly – true. In
general, it is easy for an object-oriented application
to interact with an object database. However, in this
scenario, impedance mismatch occurs when you
want to run an SQL query against the database. SQL
is by far the world's most widely used query lan-
guage, and it assumes that data is stored in relational
tables. Some object database vendors provide data
access via an object query language (OQL), but these
languages do not enjoy widespread acceptance. In
order to be compatible with common data analysis
and reporting applications, an object database must
support ODBC and JDBC, and must therefore
provide some mechanism for projecting data as
relational tables.

The typical solution is, once again, mapping.
The drawbacks of mapping – performance losses and
the lack of support for data model evolution – still
apply. The upside is that the map only need be
invoked when an SQL query is run against the
database.

Using a multidimensional Caché
with Unified Data Architecture

There is a third option for data storage – Caché,
the multidimensional database from InterSystems.
Although multidimensional databases are often
thought of as playing in the data warehousing arena,
Caché is designed to be part of transaction process-
ing applications. And it implements a unique ap-
proach to reducing impedance mismatch – the
Unified Data Architecture.

Thanks to the Unified Data Architecture, the
object and relational data models "share" Caché's
multidimensional data. Multidimensional arrays are
easily projected as tables because tables are nothing
more than two-dimensional arrays. Similarly, there is
easy correlation between objects and multidimen-
sional arrays because neither is constrained to the
rows-and-columns format of relational technology.
The translation between data forms is automated, and
becomes part of the compiled data definition. To the
developer, every table is effectively an object, and
every object is one or more tables.

Fighting Impedance Mismatch at the Database Level
September 2001: Copyright © 2001 InterSystems Corporation. All Rights Reserved.

Some other attributes of Caché's
Unified Data Architecture:

• Full concurrency
Updates to the data made through the relational
interface are instantly accessible via the object
interface and vice versa.

• Support for data model evolution
Changes to the data structure definition are
automatically reflected in both the object and
relational representations.

• Full SQL support
SQL DDL, DML, and DCL commands are all
supported.

• Full object support
Object modeling concepts such as simple and
multiple inheritance, polymorphism, advanced
data types, and method generators are all
supported.

• Object serving
Objects defined in the unified data architecture
can be served up as Java, C++, or COM ob-
jects, providing compatibility with a variety of
object-oriented technologies.

The Unified Data Architecture can dramatically
reduce impedance mismatch, but cannot entirely
eliminate it. There are some concepts, for example,
object methods and relational triggers that cannot be
shared automatically. Nevertheless, Caché is a good
choice for developers looking to combine object and
relational data access.

Conclusions

In recent years, object-oriented programming
languages such as Java, C++, and COM have become
the dominant technologies for application develop-
ment. Therefore, developers of database applications
need to be able to project data as objects.

However, SQL is by far the dominant technol-
ogy for data analysis and reporting. Thus, to be
useful, any database must be capable of projecting
data as relational tables that can be accessed via
ODBC and JDBC.

Impedance mismatch – the inherent disconnect
between object and relational data models – cannot
be avoided, but it can be significantly mitigated by
the proper choice of database technology. For new
application development, it makes sense to store data
in a multidimensional database such as Caché,
which, through its Unified Data Architecture, allows
data to be concurrently projected as both objects and
tables.

For ongoing application development, when
existing data is already stored in, say, a relational
database, developers should consider converting that
data into a multidimensional form. By making a one-
time effort to convert their data, they avoid the
performance penalties and data model evolution
headaches that are endemic to object-relational
mapping.

Fighting Impedance Mismatch at the Database Level
September 2001: Copyright © 2001 InterSystems Corporation. All Rights Reserved.

InterSystems Caché is a trademark of InterSystems Corporation. Other product names are trademarks of their respective vendors. Copyright © 2001 InterSystems Corporation. All rights reserved.

 Part No: AºB-06-01

InterSystems
World Headquarters

One Memorial Drive

Cambridge, MA 02142

USA

Phone: +1.617.621.0600

Fax: +1.617.494.1631

InterSystems.com

