

Oscillating Between Objects and Relational:
The Impedance Mismatch

By
Dan Shusman

Oscillating Between Objects and Relational:

The Impedance Mismatch

Introduction

Impedance mismatch is a term commonly used to describe the problem of an object-oriented (OO)

application housing its data in legacy relational databases (RDBMS). C++ programmers have dealt with it for

years, and it is now a familiar problem to Java and other OO programmers.

Impedance mismatch arises from the inherent lack of affinity between the object and relational models.

Problems associated with the impedance mismatch include class hierarchies binding to relational schemas

(mapping object classes to relational tables), ID generation, concurrency, as well as other problems

described below.

The impact of these issues is tied specifically to the blending of OO application and relational schema. But

the ramifications are clear in terms of time-to-market, costs of design, development, and quality assurance,

compromised code maintainability and extensibility, and the sizing and topology of the hardware required to

ensure expected response and throughput times.

Given the increasing prevalence of the OO RDBMS impedance mismatch—and its corollary, the mismatch

between SQL-based applications and object databases (OODBMS)—an examination of approaches to

resolving the resulting problems is both timely and worthwhile.

Object Development Languages

Many long-popular technologies such as C++, Microsoft’s Visual Basic, Borland’s Delphi, the now-maturing

Java language, and a host of open source languages provide an object environment in which to implement

business logic and user interfaces. To greater or lesser degrees, these OO environments implement

encapsulation, polymorphism, and inheritance. The benefits of their proper use in application development

and evolution are well-known.

But Where to Put the Data?

Object languages, like all programming languages, need to bind to a data store if persistence is required and

that store is often a database. The three most common data models are relational, object, and post-

relational, a.k.a. transactional multidimensional.

The Relational and Object Database Models: Fundamental Differences

It would be useful to contrast the basic differences of the RDBMS and OODBMS models and the

approaches to programming in each.

Simply stated, tables in the relational model contain information (columns) that organize the information in

rows. Complex data structures can require many tables. Relationships among tables (one-to-one, one-to-

many, and many-to-many) are based on foreign keys.

Business logic operations are applied from sources outside the table, for example, through the use of

embedded SQL or static, pre-coded stored procedures or triggers. To build an effective and efficient

application in the relational model, the developer must have a comprehensive knowledge of the tables, any

relationships among them, and of these external logic components.

In contrast, classes in the object model are self-contained entities. In common with relational tables, they

contain their information (properties). But a significant difference is that related data (so-called embedded

classes and collections) can be stored within the “container” class rather than as a separate tables requiring

a “foreign key”-type construct.

Another significant difference is that business logic is not applied externally in the object model. Instead, a

class implements methods that contain code for operating on the class’s properties. Methods provide

interfaces through which they are called and thereby the application developer is buffered from the

complexities of the schema.

Not Another Invoice Example!

An example of database design and coding in each of the models will demonstrate the differences

previously described.

Consider an automobile registration application. An automobile has its data—make, model, trim line, year,

VIN, etc. It has one or more owners, one or more drivers, a repair history, etc. An automobile must also be

registered, scrapped, etc.

To represent an automobile’s data in the object model, you would create Car, Person, Owner, Driver, and

RepairHistory classes.

The Owner and Driver classes would inherit properties and methods from the Person class. You would

extend those two as necessary with any unique properties and methods

Owners, Drivers, and RepairHistory would be considered collections within the Car class—perhaps

collections of references for the former two, and embedded instances for the latter.

To make this more realistic, let’s specify that an Owner can own many Cars and a Car can have many

Owners. To implement this many-to-many relationship the Owner class might contain a collection of

references to Car. (As above, the Car already has a collection of Owners.) You might also implement a

many-to-many relationship for Cars and Drivers.

Finally, let’s specify a method for the Car class, RegisterNew(), called with the parameter VIN. All the work

required to register a new car would be handled behind this interface.

These specifications are diagrammed in Figure 1.

Figure 1

Car

Make:String
Model:String
Vin:String
Owners:Owner
Drivers:Driver

RegisterNew(VIN):Boolean

RepairHistory

DateTimeIn:TimeStamp
DateTimeOut:TimeStamp
MileageIn:Float
MileageOut:Float

Person

Name:String
DateOfBirth:Date
HairColor:String

Owner

Insurer:InsuranceCarriers
LoanNumber:Loans
Cars:Car

Driver

LicenseNumber:String
Insurer:InsuranceCarrier

The Same Example in the Relational Model

To represent the example in the relational model, you would create several tables as shown in Figure 2.

Figure 2

Note the additional tables (CarDrivers and CarOwners) needed to maintain the many-to-many relationships

between Owners, Drivers, and Cars.

Car

Make:String
Model:String
Vin:String

Person

Name:String
DateOfBirth:Date
HairColor:String

Owner

Fkey_Person
Insurer:InsuranceCarriers
LoanNumber:Loans

Driver

Fkey_Person
LicenseNumber:String
Insurer:InsuranceCarrier

RepairHistory

DateTimeIn:TimeStamp
DateTimeOut:TimeStamp
MileageIn:Float
MileageOut:Float

CarOwners

Fkey_Car
Fkey_Owners

CarDrivers

Fkey_Car
Fkey_Driver

Writing Some Code

Let’s perform two activities.

Examples 1a and 1b show the use of Object and SQL programming, respectively, to report a Car’s VIN and

find all of its Owners.

Example 1a – Listing Car VINs and Their Owners: OO

objCar=Open Car(vin);

owner_count=objCar.Owners.Count()

For (i=0; i<owner_count; i++) {

 owner_name=objCar.Owners.Get(i).Name;

}

Example 1b – Listing Car VINs and Their Owners: SQL

Select Car.VIN,Person.Name

From Car, CarOwners, Owner, Person

Where CarOwners.Fkey_Car=Car.CarID

And CarOwners.Fkey_Owner=Owner.OwnerID

 And Owner.Fkey_Person=Person.PersonID

 And Car.VIN=:vin

Examples 2a and 2b are pseudo-code showing the object and SQL approaches to registering a new Car.

Example 2a – Registering a New Car: OO

// somehow we acquired the car’s VIN, make, model and list of owners

// use a class method rather than an instance method to validate

rc = Car.IsValidVin(vin)

// if rc indicates an error, logic to reject goes here

// now assume an owners[i] array and this is where the logic for validating them goes

// instantiate a new car

objCar = New Car;

// assign the properties

objCar.VIN = vin;

objCar.Model=model;

objCar.Make=make;

// now register the car

objCar.RegisterNew(vin)

// assign the Owners

For (i = 1; i < count; i++) {

obj.Car.Owners.SetAt[i] = owner[i]

}

// make it persistent

objCar.Save()

Example 2b – Registering a New Car: SQL

// somehow we acquired the car’s VIN, make, model and list of owners

//validation of information is external to the table

If (vin == “”) ! (vin=0){

 Exception(“VIN required”)

}

//Other fields would be validated here

//

&sql(Insert Into Car(Make, Model, VIN) Values(:make, :model, :vin)

// recover the new assigned Car ID

&sql(Select CarId Into :car_id from Car Where Car.VIN=:vin)

// and assign the owners to the Car

For (i = 1; i < count; i++) {

 &sql(Insert Into CarOwners(CarKey,OwnerKey) Values(:car_id,:owner[i])

}

An Impedance Mismatch When Manipulating the Database

An object programmer working in a pure OO environment might approach the development by writing the

code represented by Examples 1a and 2a. An SQL programmer’s approach using an RDBMS is outlined in

Examples 1b and 2b.

An object programmer working with an RDBMS must somehow blend Examples 1a and 1b with those parts

of Example 2b that touch the database. To put it another way, the persistence methods of each class—

(Open(), Save(), Delete(), and so forth—must now be coded in SQL (or in another RDBMS technology, e.g.,

stored procedures) to set and fetch data as needed. For instance, in the Car example,

• The Open() method would execute an SQL SELECT query that recovers the columns of the Car

table and binds their data to the attributes in the Car class.

• The Count() method used to iterate overall Owners would require code like this:

Select Count(*) From CarOwners Where CarOwners.Fkey_Car=Car.CarID AND Car.VIN=:vin)

• The Get(index) method that examines each Owner instance to recover the Name would require

code that would populate a ‘result set’ with a query similar to:

Select Person.Name

From Car, CarOwners, Owner, Person

Where CarOwners.Fkey_Car=Car.CarID

And CarOwners.Fkey_Owner=Owner.OwnerID

 And Owner.Fkey_Person=Person.PersonID

It Doesn’t Stop There: More Subtle Complexities of the Impedance Mismatch

Additional issues that must be considered when attempting to blend an OO application with an RDBMS

include:

• Associating the classes with one or more underlying tables

The task at hand is to associate the attributes of each class with a column in some table. A one-to-

one correspondence of a class to a table is easy to grasp, but the most appropriate object model

might require a class that spans a number of tables, taking a subset of columns from each. Or

multiple classes might map to the same table and reinterpret the semantics of the table according to

their respective needs (which might require a new column in the table to hold the class name

responsible for the row.) The reinterpretation and possible manipulation of the relational schema to

project data to the object model can rapidly dissociate the object and relational schemas.

• ID generation – the Object ID and Inserts into the RDBMS

Object ID generation and the process by which unique keys are generated in the RDBMS by an

object Save() method are of great importance. In a one-to-one association of a class and a table,

often the best solution is to use the RDBMS engine to generate the next ID and that value becomes

the object ID. But a class might span multiple tables and its Save() method might require multiple

relational IDs that as a group, must be associated with a single object ID. This association must

persist so that when the object is opened, the rows from multiple tables can be recovered to

populate the instance. Therefore, an additional table has to be built and maintained to associate the

object ID with the (multiple part) relational ID.

• Validation and other checks

If the original SQL-based application used against the RDBMS has applied external validation to

data, that code must be identified and moved into the object application.

• Handcrafting persistence methods and order of operation

You must be very conscious of application-level data integrity. If you are implementing a Save()

method, the operations (Insert, Update, and Delete) might require a specific sequence to ensure

application-level database integrity.

• Attending to concurrency

Another influence on application-level data integrity is concurrency. You must ensure that the levels

of Locking—from one to exclusive read/write—offered by the RDBMS are reflected in the

persistence methods of the class.

• Attending to schema evolution

Because of the object-relational mapping, care must be taken that the object schema and the

relational schema remain coordinated as they evolve. The possible dissociation of the object

schema from the original relational schema (discussed earlier) will complicate this.

• Maintaining dual use

All of the previous issues have bearing on whether the original application and the newly crafted

object application can operate simultaneously against the original RDBMS.

Remedies Offered by the Marketplace

There are four typical approaches to addressing the impedance mismatch issue.

1. Use object facilities of a relational database

2. Use object-relational mapping tools

3. Adopt an object database

4. Adopt a post-relational database

1. Using Object Facilities of a Relational Database

While RDBMS vendors have made valiant efforts to add object capabilities to their engines, they have not

really solved the problem. None is a true object implementation. In many ways, they suffer from the

impedance mismatch themselves. Inheritance, polymorphism, and encapsulation are not concepts easily

blended into the core technologies offered by these vendors. In the end, the developer is reduced to

manipulating a quasi-object layer atop the still-existent RDBMS.

2. Using Object-Relational Mapping Tools

Many database vendors or third parties offer products that provide “object-relational mapping” software to

associate application classes with underlying tables in an RDBMS. These tools might include a runtime

caching component used to enhance the performance and integrity of database operations (inserts,

updates, deletes, selects, and associated concurrency requirements), methods for unique ID generation,

and generation of bindings (JavaBeans, COM objects) for use with supporting languages. Such tools can be

very effective in helping develop the code required to expose a relational schema to an object-based

application. There are quite a few such packages that are well-regarded.

But object-relational mapping tools tend to shift responsibility back to the developer as problems become

more complex. This is especially true when mapping a class across tables or mapping multiple classes to a

single table, and when dealing with the resulting ID generation intricacies.

3. Adoption of an Object Database

Another approach to dealing with impedance mismatch is to adopt a true object database. The advantage to

using these databases is their affinity for OO concepts.

Some considerations are:

• The market share for such databases is small

• Transactions posted against the RDBMS must be available to the OODBMS

• An impedance mismatch exists between SQL-based applications and object databases

Another consideration would be the example of an end user with sophisticated decision support (DS) tools

on the desktop. Most likely those tools are composing SQL queries under the interface using ODBC to

connect to targeted databases, therefore requiring a relational view of the object-based data. Some

OODBMS vendors deliver relational-object mapping strategies deployed on a middle tier computer to

overcome this mismatch.

4. Adoption of Caché, the Post-Relational Database

Post-relational (a.k.a., transactional multidimensional) databases such as Caché implement an associative

array technology that can be projected to an object or relational model simultaneously and without

intervening mapping tools or caching middle tiers.

Persistence methods such as Save() are projected directly to the object developer and are implemented by

the database itself through native commands that manipulate the associative arrays. Simultaneously, these

engines can project a relational view of the same (associative array) data exposed through ODBC and

JDBC. The implementation of Insert and other SQL DDL, DML, and DCL commands result in the same

native database commands that implement the object persistence methods. Since multidimensional engines

are able to implement simultaneous and direct access by each projection, they minimize, if not obviate

altogether, the issues of ID generation, concurrency, validation, etc.

Simultaneous and direct access by each projection (including management of concurrency) implies that an

SQL-based application (VB, C++, or Delphi over ODBC) can operate at the same time as an object-based

application (VB, Java, or C++). Also, the relational projection would allow end users to employ their favorite

SQL-based front-end tool for decision support.

Conclusion

We have examined the major approaches to resolving the impedance mismatch between OO languages

and RDBMSs: trying to implement against the partial object support offered by some RDBMSs, employing

an object-relational mapping tool, adopting an object database, or using a post-relational (transactional

multidimensional) database.

Some of the questions to consider when evaluating such technologies include:

• Is the technology easily adopted (learning curve, etc.) and integrated for immediate need?

• Is the technology extensible enough that it can satisfy future application and database needs?

• Is the technology flexible enough to integrate newer technologies like XML, SOAP, and others?

• Does the technology allow the developer to implement code in the correct logical tier? In other

words, will code that is better-executed on the database server have to be moved instead to an

application server or other middle-tier strictly to accommodate the technology?

• Can the technology provide the scalability and performance needed to enable an organization to

deploy it to the Web and/or enterprise-wide without undue impact on infrastructure and operations?

• Is the technology useful in resolving certain development issues only to create additional

downstream run-time problems?

One thing is certain: The marketplace is quite clear that OO is the desired approach for new application

development and evolution of legacy applications. Organizations with heavy investments in RDBMSs must

decide whether they will take a short, medium, or long-term view in mitigating the effects of the impedance

mismatch between the object and relational paradigms.

InterSystems Caché is a trademark of InterSystems Corporation. Other product names are trademarks of their respective vendors.

Copyright © 2002 InterSystems Corporation. All rights reserved. 02/02

InterSystems Corporation
World Headquarters

One Memorial Drive

Cambridge, MA 02142

Tel: 1.617.621.0600

Fax: 1.617.494.1631

www.InterSystems.com

http://www.InterSystems.com
http://www.InterSystems.com

	Oscillating Between Objects and Relational: The Impedance Mismatch
	Introduction
	Object Development Languages
	But Where to Put the Data?
	The Relational and Object Database Models: Fundamental Differences
	Not Another Invoice Example!
	Figure 1

	The Same Example in the Relational Model
	Figure 2

	Writing Some Code
	Example 1a – Listing Car VINs and Their Owners: OO
	Example 1b – Listing Car VINs and Their Owners: SQL
	Example 2a – Registering a New Car: OO
	Example 2b – Registering a New Car: SQL

	An Impedance Mismatch When Manipulating the Database
	It Doesn’t Stop There: More Subtle Complexities of the Impedance Mismatch
	Associating the classes with one or more underlying tables
	ID generation – the Object ID and Inserts into the RDBMS
	Validation and other checks
	Handcrafting persistence methods and order of operation
	Attending to concurrency
	Attending to schema evolution
	Maintaining dual use

	Remedies Offered by the Marketplace
	1. Using Object Facilities of a Relational Database
	2. Using Object-Relational Mapping Tools
	3. Adoption of an Object Database
	4. Adoption of Caché, the Post-Relational Database

	Conclusion
	Contact InterSystems Corporation

