Reference for the JSON Web Classes
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Elliott Grey - mar 7, 2023 10m read

Reference for the JISON Web Classes

Foreword

InterSystems IRIS versions 2022.2 and newer feature a redesigned functionality for JISON web tokens (JWTSs).
Once housed under the %0Auth2 class package, the JWT class, along with other JISON web classes (JWCs), now
live under %Net.JSON. This migration occured in order to modularize the JWCs. Before, they were closely
intertwined with the implementation for the OAuth 2.0 framework. Now, they can be maintained and used
separately from OAuth2.

Note: For backwards compatibility, the classes still exist under %OAuth2 package, but the codebase now uses
%Net.JSON.

The goal of this article is to serve as a sort of cheat sheet for the JWCs because in my quest for writing

documentation for them, | didn't find any one source with comprehensive information that covered all of them and
how they related to each other. | aim for this article to be that source.

Prologue

What are JWCs?

JSON web classes are web protocols using JSON-based data structures. They are useful for authorization and
information exchange, such as in OAuth 2.0 and OpenlD Connect.

InterSystems IRIS 2022.2+ currently supports seven classes under %Net.JSON: (click to expand definition)

> JSON Object Signing and Encryption (JOSE)
A set of standards for signing and encrypting data using JSON-based data structures. Includes JWT, JWS, JWE,
JWA, JWK, and JWKS.

> JSON Web Token (JWT)
A compact, URL-safe means of representing claims transferred between two parties that can be digitally signed,
encrypted, or both.

> JSON Web Signature (JWS)
A JWS represents signed content using JSON-based data structures. The JWA defines the signing and verification
algorithms for the JWS. AKA a signed JWT.

> JSON Web Encryption (JWE)
A JWE represents encrypted content using JSON-based data structures. The JWA defines the encryption and
decryption algorithms for the JWE. AKA an encrypted JWT.

> JSON Web Algorithms (JWA)
A JWA defines a set of cryptographic algorithms and identifiers used with the JWS, JWE, and JWK classes.

Page 1 of 8

https://community.intersystems.com/user/elliott-grey
https://docs.intersystems.com/iris20223/csp/docbook/DocBook.UI.Page.cls?KEY=GOAUTH
https://docs.intersystems.com/iris20223/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&PACKAGE=%25JSON

Reference for the JSON Web Classes
Published on InterSystems Developer Community (https://community.intersystems.com)

> JSON Web Key (JWK)
A JWK represents a cryptographic key used as input for the algorithms defined in the JWA class.

> JSON Web Key Set (JWKS)
A JWKS is a set of IWKs

The following diagram demonstrates the relationship between the JWCs as defined above:

JOSE

[Optional] [Optional]
Signed content Encrypted content
represented in represented in

Uses
algorithms
defined in

Takes cryptographic
key(s) as input from

JWKS

Page 2 of 8

Reference for the JSON Web Classes
Published on InterSystems Developer Community (https://community.intersystems.com)

We'll break down the different pieces further in the next section.

A JWT Dissection

A JSON web token (JWT) is a compact, URL-safe means of representing claims transferred between two parties
that can be digitally signed, encrypted, or both.

There are two types of JWTs:
-JWS
- JWE

A JWS is a signed JWT and a JWE is an encrypted JWT. Common parlance appears to be to just say "JWT" or
"encrypted JWT." Notice that the default is for JWTs to be signed, although they can be unsigned (these are
unsecured JWTS).

But let's back that up a second- what is a claim? A claim is just a piece of information represented in a key/value
pair that a client is asserting as true. For example, it could be information about a client trying to log in from a
certain location. The following JSON object contains three claims (username, location, and admin):

"usernane": "persephone",
"l ocation": "underworld",
"adm n": "true"

So JWTs transfer claims like that between two parties, such as a client and a server. However, if they just
transferred just that information, there would be no guarantee that someone didn't tamper with it or that no one but
the intended recipient saw the contents. Our message would have no integrity or confidentiality. Fortunately, JWTs
provide an optional way of guaranteeing both with the JSON web signature (JWS) and JSON web encryption
(JWE) standards. Whether it's a JWS or a JWE, there are multiple parts to a JWT.

JSON Web Signature (JWS)

For a non-encrypted, signed JWT (henceforth called a JWS), there are three parts:

1. Header
2. Payload
3. Signature

Each part is a JSON object. If you Base64URL encode each part and concatenate them together with a period (.)
between them, you have a JWT (header.payload.signature).

Let's dive into each part.

The Header

The header part of a JWS consists of metadata about the token type and, if specified, the JSON web algorithm
(JWA) needed for signature validation of the token. It could look like the following:

{

al g": "HS256",

Page 3 of 8

Reference for the JSON Web Classes
Published on InterSystems Developer Community (https://community.intersystems.com)

"typ": "JW™M

Base64URL encode this (below) and you have the first part of a JWT!

eyJhbCci O JI Uzl 1IN | sl nR5¢cCl 61 kpXVCI9

So, quick recap: the header contains the JWA and token type.

The Payload

The second part of a JWS is the payload. It holds the claims. Using the previous example, one such payload could
be:

"usernane": "persephone",
"l ocation": "underworld",
"admin": "true"

Then we Base64URL encode it to get:

eyJic2Vybntt ZSI 61 nBl cnN cGhvbmJi LCIsb2Nhdd vbi | 61 nVuzGvyd29ybGQ LCIhZGLpbi | 61 nRydWUi f
Q

So now our JWS looks like:

eyJhbGeci O JI Uzl 1Ni | sl nR5¢cCl 61 kpXVCJ9. eyJ1lc2Vybntt ZSI 61 nBl cnNl cGhvbmUi LCIsb2Nhdd@ vbi | 6
I NVuzGvyd29ybGQ LCIhZGlpbi | 61 nRydWJi f Q

So, quick recap: the payload contains the claims/information you want to transmit.

The Signature

The third part of a JWS is the signature. You take the JWT so far (the encoded header and the encoded payload),
a secret (also known as a private key or a JSON web key (JWK)), the algorithm specified in the JWA, and sign that.
Doing so might look something like this:

HVMACSHA256(
base64Ur | Encode(header) + "." +
base64Ur | Encode(payl oad),
secret)

Using the secret/JWK value thecatsmeow, our final JIWS would look like:

eyJhbGeci O JI Uzl INi | sl nR5¢cCl 61 kpXVCJ9. eyJ1lc2Vybntt ZSI 61 nBl cnNI cGhvbmUi LCIsb2Nhdd vbi | 6

Page 4 of 8

Reference for the JSON Web Classes
Published on InterSystems Developer Community (https://community.intersystems.com)

| NVuZGVyd29ybGQ LCInZGLpbi | 61 nRydWIi f Q KAZcj COt qRVADunI 3sSma3k6f vL5nt gLXe9d 7hKg50

So, quick recap: the signature contains the integrity validation.

Abstracting up a little bit, we have:

You Noticed | Said...

You may have noticed that | qualified our JWT as "can be digitally signed, encrypted, or both."

Let's talk about the signing part first then dive into the encryption in the next section. It is possible to not sign the
JWS and just have a header and payload (so no longer a JWS but an unsigned, unencrypted JWT). This is
possible if the JWA specified in the header is "none".

So it would look like:

{
"al g": "none",
"typ": "JWI

}

Then the resulting JWT would just be the Base64URL encoded header + . + Base64URL encoded payload + .. The
signature would be an empty string, so an example unsecured JWT might look like:

eyJhbGeci G Jub25I | n0. eyJpc3M QG Jgb2Ui LAOKI CJI eHAI § Ez MDA4MTkz ODAs DQogl mhOdHAGLY 9l eGFt ¢
xI Ln\vbS9pc19yb290I j pOcnVI f Q

But please don't send unsecured JWTs because then anyone could tamper with them and you don't know if the
claims are valid.

JSON Web Encryption (JWE)

To reiterate, a JWT can be digitally signed, encrypted, or both. We already discussed signatures with JWSs, so
let's move on to encryption.

As noted before, a non-encrypted, signed JWT (JWS) has three parts: the header, payload, and signature.

As noted now, an encrypted JWT (henceforth called a JWE) has five parts:

1. Protected Header

2. Encrypted Key

3. Initialization Vector (IV)
4. Payload/Ciphertext

5. Authentication Tag

Protected Header

The protected header is the first part of a JWE. It is unencrypted because the recipient needs to know how to
decrypt the rest of the JWE. To inform them of how, it contains information such as 1) the algorithm used to encrypt
the content encryption key (CEK) and produce the encrypted key as well as 2) the algorithm used to encrypt the
payload and produce the ciphertext and authentication tag.

Page 5 of 8

Reference for the JSON Web Classes
Published on InterSystems Developer Community (https://community.intersystems.com)

The following is an example of a protected header:

{
"al g": " RSA- CAEP",
"enc": " A256 GCM'

It is then Base64URL encoded to produce:

eyJhbCci O JSUOEt TOFFUCI sl mVuYyl 61 KEyNTZHQOOi f Q

Encrypted Key

The second part of our JWE is the encrypted key. The encrypted key is the encrypted form of the CEK, which is a
symmetric key used to encrypt the payload and produce the ciphertext and authentication tag. The CEK is
encrypted using the algorithm specified in the "alg" value in the protected header and the recipient's public key.

With a CEK of thecatsmeowmeows and a randomly generated RSA 1024-bit public key, one such value of the
encrypted key using the RSA-OAEP algorithm could be:

X6znPl KWHNOBVhHD2s cnUv 7PVA08VF x HYXmZQROJ 8/ 1 qGOB+udq8Dk Xd93n7S2¢ S3LT1I nx4qQ6JI8GquQyc2x
f S5n21 NgKj SedYac4LBCknpYRbRy Nawk2e MEUDkcdBl qBE4NI W ARl 6XOHAAI Ns7r +P8f f i pvyzt d51JdLoTI
W=

The encrypted key is then Base64URL encoded and concatenated to the protected header. So we have our JWE
so far as:

eyJhbGei G JSUOEt TOFFUCI s| mVuYyl 61 kEyNTZHQOOi f Q \WDZ6bl BIS1dl bk84TWal RDIz Y25Vdj dQVk FvOF
ZmeEhZeGlaUVl wSj gvenFHTOI r dWRx OERr WBQEM243Uz Jj Uz NMVDFIbngOc VELS] hHe XVRe Wy e GZTNWAY SUS
NS2pTZWRZYWWDTEJ Da2 1wMWJi Unl OYXdL MWNRVWEa2NKk Qrkx Qk U0 Tk XYOFobDZYMEGOQW OczdyK1A4ZniZp
cHZ5enRKNTFKZEXVVGX 3PQ

Initialization Vector (IV)

The IV is the third part of the JWE. It is randomly generated and Base64URL encoded. It does not need to be
secret, so it is not encrypted. An example IV could be catsarefantastic. We would then Base64URL encode this
and concatenate with the encoded protected header and encrypted key parts to get:

eyJhbCci G JSUOEt TOFFUCI sl mVuYyl 61 kEyNTZHQOO0i f Q WDZ6bl BJS1dl bk84TWhl RDJzY25Vdj dQvkFvOF
ZmeEhZeGlaUWVI wSj gvenFHTOI r dVWRx OERr WBQBEM2 43Uz Jj Uz NMVDFJbngOcVELS] hHec XVReWW e GZTNWy SUS
NS2p TZWRZYWWDTEJ Da2 1wWW/Ji Unl OYXdLMWNRVVEa2 Nk Qrxx Gk UOTmx XYOFob DZYMEgOQW CczdyK1A4ZniZp
cHzZ5enRkNTFKZEXvVGx3PQ. Y2F0c2FyZWZhbnRhc3RpYw

Payload/Ciphertext

The fourth part of the JWE is the payload/ciphertext. This is where we nest the JWT. Everything so far has been
about how do we protect and then later read this data once received, but now we get to talk about the data.
Everything we talked about in the JWS section applies here. We have our three piece JWS with the header,

Page 6 of 8

Reference for the JSON Web Classes
Published on InterSystems Developer Community (https://community.intersystems.com)

payload, and signature. Then using the CEK and IV, we encrypt the JWS using AES GCM and request a 128-bit
authentication tag output.

An example of a possible Base64URL encoded ciphertext is:

Nj 1 0Yj ZkZTl mVGEzNj KOMIgy MTYy NTc3MYEyM MAZWOMIIhMel | MzJi OGVj NzVj Mz UAME z NTVhMGUy N2MLM
Wy Y2Y20G y YNk ODMR YN Zj BKOGI zZj Mz MvQy ODBI ZWZhNj BKYTQEMRVI Nj RnMTg4Nmive YTFI Y2E20GQ0N

ky OGQz NTFj OAFj ODdhY2Qz ZDc0ZTY4OTc 1 MIA4Nz QONTEY NTJhOGVBN2U3OGFK N J hMrNmMAQWANZ MB MYQWYZ ¢
yMREZM g5MAF 2Y] | mvz RKNmYx MDUSYTVI MTT j ZThj MINKNzFI M gz ZWy1ZGVDZDdnZ TNhMzk 1 YnVRVDES N Rm
Zmvwynzl NDVR YWY 1Mz ZnYTdi YTYZNWUBNTImMVzk LOTBhY2Y2Z\WWAY] | nZj Brivz Y1ZTMDMRUSYZ EAOTKOZj AyY
TZI NDAON] EzZNDMLZTVhMQ

So our JWE so far is:

eyJhbGeci O JSUOEt TOFFUCI s| mVuYyl 61 kEyNTZHQDO0i f Q WDZ6bl BJS1dl bk84TWhl RDJIZ Y25Vdj dQVvk FvOF
ZmeEhZeGlaWVI wSj gvenFHTOI r dWRx OERr WBQEM243Uz Jj Uz NWDFJbngO0cVELS) hHe XVReWW e GZTNWLy SUS
NS2p TZWRZYWWDTEJ Da2 1wM¥Ji Unl OYXdL M WNRVVEa2 Nk Qrkx Gk U0 Tk XYOFobDZYMEgQOQW CczdyK1A4Zn¥p
cHZ5enRKNTFKZEXVVGx3PQ. Y2F0c2FyZWZhbnRhc3RpYw. Nj | 0Y] ZKZTI mvGEZNj KOMTgy MTYyNTc3MEYM M
4ZWYOMTIhMzl j MeJdi OGV) NzVj MeUWAME zNTVhMGUy N2MLMAYY Y2Y20d y YNk ODMR YiNi Zj BKOG zZj Mz My
ODBl ZWZhNj BKYTQEM2VI Nj RhMTg4NmvE YTFI Y2E2O0GQON ky OGQz NTFj OWFj ODdhY2QzZDc0ZTY4COTc1MITA4N
ZQONTEYNTIhOGVBEN2U3OGFK N J hMyNmiVARQWNz VB MQWYzcy MEzM g5MAY 2Yj | mvE RKNmYx VDUSYTVI MT1 j ZT
hj MTINKNzFI M gzZWy1ZGWZDdnZTNnMz k 1YV VDESN] RriZmMwYniZl NDVR YWY LMz ZmiYTdi YTYzZ NWU3NTJ miviz k
10TBhY2Y2ZWWAYj | nZj BmYzY1ZTMOMRUSYZE4CTKOZj Ay YTZI NDAON EzNDMLZTVhMQ

Authentication Tag

The authentication tag is the final part of the JWE. It is an output of obtaining the ciphertext (encrypted nested
JWS). The authentication tag received from encrpyting the ciphertext in the last section is:

9f 19e30ef eddf 20f 5232b76f 07c755ac

So we Base64URL encode it and concatenate it on the JWE to get our finalizad JWE as:

eyJhbCci G JSUOEt TOFFUCI sl mVuYyl 61 kEy NTZHQOO0i f Q WDZ6bl BJS1dl bk84TWhl RDJzY25Vdj dQvkFvOF
ZmeEhZeGlaWVl wSj gvenFHTOI r dWRx OERr WBQB6MR43Uz Jj Uz NWDFJbngO0cVELS) hHe XVReWW e GZTNWy SUS
NS2pTZWRZYWMD TEI Da2 1wM¥/Ji Unl OYXdLMMWNRVVEa2 Nk Qrxx Gk U0 Tk XYOFobDZYMEgQOQW Cczdy K1A4ZnZp
cHzZ5enRkNTFKZExvVGx3PQ. Y2F0c2FyZWZhbnRhc3RpYw. Nj | 0Yj ZkZTl mMGEzZN) KOMTgy MTYyNTc3MEYM M
4Z\WYOMTIhMezl j MzJdi OGV] NzVj Mz UAME zNTVhMGUy N2MLMAYY Y2Y20GE y YniNk ODMR YNNI Zj BKOG zZj Mz My
DBl ZWzhN BkYTQeM2VI N RhMTg4Nmvz YTFI Y2E20GQ0N Ky OGQz NTFj OWFj ODdhY2QzZDc0ZTY4OTc1MIA4N
zQONTEYyNTIhOGVBN2U3OGFK N J hMTNmVAQWNZ VB MQwYzcy MEzM g5MAY 2Y] | mive RKNmYx VDUSYTVI MT1 j ZT
hj MTNKNzFI M gzZW1ZGWZDdnZ TNnMz k1 YmVR VDESN) RmizmMwY izl MDVR YWY LMz ZmiYTdi YTYZ NWU3NTJI miviz k
10TBhY2Y2ZWWAY] | nZj BmYzY1ZTMOM2US5YZE4OTKOZj Ay YTZI NDAON Ez NDMLZTVhMQ. OWYx OANUz MGVIMZ\WRk Z
j1wzj UyMzJdi NzZmvidj Nz UL YWM

Let's abstract away the Base64URL encoding and look at the high level overview of a JWE:

Notes on Terms

In striving for clarity, | dropped using some of the JSON web class names in favor of their descriptive names.
Namely, JWK/JWKS in favor of public keys, cryptographic keys, encryption keys, etc. The key used for encryption

Page 7 of 8

Reference for the JSON Web Classes
Published on InterSystems Developer Community (https://community.intersystems.com)

or signing is a JSON web key (JWK) and the set of them (so the symmetric key and the pairs of asymmetric keys)
are a JSON web key set (JWKS).

| wanted to pause to mention this to bring all the terminology full circle. A JWT is either a JWS or a JWE. The
algorithms used in a JWS/JWE are defined in the JWA. The keys used as input for the algorithms in the JWA are
JWKSs and stored as a set as a JWKS.

What about JOSE? JOSE is the collection of standards. Like we have a murder for crows or a clowder for cats, we
have a JOSE for JSON web standards.

Conclusion
| hope this article serves as a good reference point for those looking to work with the JSON web classes (JWCs).

The JWCs have three different use cases:

1. Authentication
2. Authorization
3. Information exchange

In InterSystems IRIS 2022.2+, you can set the OAuth 2.0 configurations to use JWTs. This is described in OAuth
2.0 and OpenlD Connect. Your custom code can utilize the JWCs as defined in %Net.JSON for these use cases as
well.

If you found this article helpful, please let me know!

#JSON #OAuth2 #Security #InterSystems IRIS

Source URL:https://community.intersystems.com/post/reference-json-web-classes

Page 8 of 8

https://docs.intersystems.com/iris20223/csp/docbook/DocBook.UI.Page.cls?KEY=GOAUTH
https://docs.intersystems.com/iris20223/csp/docbook/DocBook.UI.Page.cls?KEY=GOAUTH
https://docs.intersystems.com/iris20223/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&PACKAGE=%25JSON
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/oauth2
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/reference-json-web-classes

