
OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Lorenzo Scalese · Feb 1, 2023 17m read
 Open Exchange

OpenAPI Suite - Part 1
Hi Community,

I would like to present my last package OpenAPI-Suite, this is a set of tools to generate ObjectScript code
from an OpenAPI specification version 3.0. In short, these packages allow to:

Generate server-side class. It’s pretty similar to the generated code by ^%REST but the added
value is the version 3.0 support.
Generate HTTP client classes.
Generate client production (business services, business operation, business process,
Ens.Request, Ens.Response) classes.
A web interface to generate and download the code or generate and compile directly on the
server.
Convert specification from version 1.x, 2.x to version 3.0.

Overview
OpenAPI Suite is split into many packages, and uses different developer community libraries and also
public REST services. You can see on the schema below, all packages have been developed, and
libraries and web services used:

Page 1 of 13

https://community.intersystems.com/user/lorenzo-scalese
https://openexchange.intersystems.com/package/OpenAPI-Suite
https://openexchange.intersystems.com/package/OpenAPI-Suite
https://openexchange.intersystems.com/package/openapi-suite
https://swagger.io/specification/
https://docs.intersystems.com/iris20201/csp/docbook/Doc.View.cls?KEY=GREST_routine

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

Note: In case of a problem using public REST services, it’s possible to start a docker instance of the
converter and validator service.

What does each package do?
OpenAPI Suite has been designed in different packages to ease maintenance, improvement and future
extension. Each package has a role. Let's have a look at it!

openapi-common-lib

Page 2 of 13

https://openexchange.intersystems.com/package/openapi-common-lib

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

This contains all the common code to the others packages. For example, openapi-client-gen and
openapi-server-gen accept the following input for an OpenAPI specification:

URL
File path
%Stream.Object
%DynamicObject
Format YAML
Format JSON
OpenAPI version 1.x, 2.x, 3.0.x.

However, only a specification 3.0.x in a %DynamicObject can be processed. The code for the
transformation is located in this package. It also contains various utilities.

swagger-converter-cli

It’s a dependency of openapi-common-lib. This is an HTTP client using the public REST
service converter.swagger.io in order to convert OpenAPI version 1.x or 2.x in version 3.0.

swagger-validator-cli

It’s also a dependency of openapi-common-lib, even if his name is “validator”, it’s not used to validate the
specification. converter.swagger.io provide the service “parse” allowing to simplify the structure of an
OpenAPI specification. For example: create a definition for a “nested object definition” and replace it
with a “$ref”. This reduces the number of cases to be dealt with in the code generation algorithm.

openapi-client-gen

This package is dedicated to client-side code generation to help developers to consume REST services.

It includes a simple HTTP client or a Production client (business services, process, operation, Production
classes). Originally created to support OpenAPI 2.x It was just completely refactored to support version
3.x.

openapi-server-gen

The opposite of openapi-client-gen, it is dedicated to server-side code generation. There is no interest in
specification version 2.0 because ^%REST exists but the target of this package the version 3.0 support.

openapi-suite

It gathers all the above packages and provides a REST API to:

Generate the code and compile code on the IRIS instance.
Generate code without compiling for download only.

A web interface is also provided to consume this REST API and thus exploit the functionalities of the
OpenAPI Suite.

Page 3 of 13

https://openexchange.intersystems.com/package/Open-API-Client-Gen
https://openexchange.intersystems.com/package/openapi-server-gen
https://openexchange.intersystems.com/package/swagger-converter-cli
https://converter.swagger.io/
https://openexchange.intersystems.com/package/swagger-validator-cli
https://converter.swagger.io/
https://openexchange.intersystems.com/package/Open-API-Client-Gen
https://openexchange.intersystems.com/package/openapi-server-gen
https://docs.intersystems.com/iris20201/csp/docbook/Doc.View.cls?KEY=GREST_routine
https://openexchange.intersystems.com/package/OpenAPI-Suite

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

And the libraries?
Here are some of the existing libraries on the DC that have been useful in this development:

objectscript-openapi-definition

A useful library to generate model classes from an OpenAPI specification. This is a very important piece
of this project and I’m also a contributor.

ssl-client

Allows creating SSL Configuration. Mainly used to create a configuration name “DefaultSSL” for HTTPS
requests.

yaml-utils

In the case of YAML format specification, this library is used to convert into JSON format. A must-have
in this project. By the way, it was developed initially to test YAML specification with openapi-client-gen
version 1.

io-redirect

This is one of my libraries, It allows redirecting “write” into a stream, file, global or string variable. It’s
used by the REST service to keep a trace of the logs. It’s inspired of this community post.

Installation IPM
To install the suite, your best friend is IPM (zpm). There are many packages and dependencies, and
using IPM is definitely convenient.

zpm "install openapi-suite"
; optional
; zpm "install swagger-ui"

Installation Docker
There is nothing special, this project uses the intersystems-iris-dev-template.

git clone git@github.com:lscalese/openapi-suite.git
cd openapi-suite
docker-compose up -d

If you have an error at Iris start, maybe this is a permission issue iris-main.log.

You can try:

Page 4 of 13

https://openexchange.intersystems.com/package/objectscript-openapi-definition
https://openexchange.intersystems.com/package/ssl-client
https://openexchange.intersystems.com/package/yaml-utils
https://openexchange.intersystems.com/package/io-redirect
https://community.intersystems.com/post/rest-and-io-redirection
https://openexchange.intersystems.com/package/InterSystems-Package-Manager-1
https://openexchange.intersystems.com/package/intersystems-iris-dev-template

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

touch iris-main.log && chmod 777 iris-main.log

Note: adding RW permission for the irisowner user should be enough.

How to use It
OpenAPI-Suite provides a web interface to “Generate and download” or “Generate and install” code.

The interface is available at http://localhost:52796/openapisuite/ui/index.csp (*adapt with your port number if
needed).

It’s very simple, fill out the form:

1. Application package name: this is the package used for the generated classes. It must be a non-
existing package name.

2. Select what do you want to generate: HTTP Client, Client Production or REST server.
3. Select the namespace where the code will be generated. It makes sense only if you click “Install

On Server” otherwise this field will be ignored.
4. Web Application Name is optional and available only if you select “REST Server” to generate.

Leave empty if you don’t want to create a Web Application related to the REST dispatch class
generated.

5. The OpenAPI specification field could be an URL pointing to the specification or a copy\paste of
the specification itself (in this case the specification must be in JSON format).

Page 5 of 13

http://localhost:52796/openapisuite/ui/index.csp
http://localhost:52796/openapisuite/ui/index.csp

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

If you click the “Download Only” button the code will be generated and returned in an XML file, and then
the classes will be deleted from the server. The namespace used to store temporarily the generated
classes is the namespace where OpenAPI-Suite is installed (By default IRISAPP if you use a docker
installation).

However, if you click the “Install On Server” button the code will be generated and compiled, and the
server returns a JSON message with the status of the code generation \ compilation and also logs.

By default this feature is disabled, to enable just open an IRIS terminal and:

Set ^openapisuite.config("web","enable-install-onserver") = 1

Explore the OpenAPI-suite REST API
The CSP form uses REST services available at http://localhost:52796/openapisuite.

Open swagger-ui http://localhost:52796/swagger-ui/index.html and
explore http://localhost:52796/openapisuite/_spec

This is the first step towards creating a more advanced front-end application with the Angular framework.

Page 6 of 13

http://localhost:52796/openapisuite
http://localhost:52796/swagger-ui/index.html
http://localhost:52796/openapisuite/_spec

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

Generate code programmatically
Of course, it's not mandatory to use the UI, we see in this section how to generate the code programmatically and
how to use the generated services.

All snippets are also available in the class dc.openapi.suite.samples.PetStore.

HTTP client

Set features("simpleHttpClientOnly") = 1
Set sc = ##class
(dc.openapi.client.Spec).generateApp("petstoreclient",
"https://petstore3.swagger.io/api/v3/openapi.json", .features)

The first argument is the package where the classes will be generated, so be sure to pass a valid
package name. The second argument could be an URL pointing to the specification, a filename, a
stream, or a %DynamicObject. “features” is an array, currently only subscripts are available :

simpleHttpClientOnly: if 1 only a simple HTTP client will be generated otherwise, a production will be

Page 7 of 13

https://github.com/lscalese/openapi-suite/blob/master/src/dc/openapi/suite/samples/PetStore.cls

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

also generated (default behaviour).

compile: if 0 the generated code won’t be compiled. It could be useful if you want to generate code for
export purposes only. By default, compile = 1

Below is an example of how to use the service “addPet” with the just-generated HTTP client:

Set messageRequest = ##class(petstoreclient.requests.addPet).%New()
Set messageRequest.%ContentType = "application/json"
Do messageRequest.PetNewObject().%JSONImport({"id":456,"name":"Mittens",
"photoUrls":[
"https://static.wikia.nocookie.net/disney/images/c/cb/Profile_-_Mittens.jpg/revision/
latest?cb=20200709180903"],"status":"available"})

Set httpClient = ##class(petstoreclient.HttpClient).%New(
"https://petstore3.swagger.io/api/v3","DefaultSSL")
; MessageResponse will be an instance of petstoreclient.responses.addPet
Set sc = httpClient.addPet(messageRequest, .messageResponse)
If $$$ISERR(sc) Do $SYSTEM.Status.DisplayError(sc) Quit sc

Write !,"Http Status code : ", messageResponse.httpStatusCode,!
Do messageResponse.Pet.%JSONExport()

Click to show generated classes.

HTTP client Production

Set sc = ##class
(dc.openapi.client.Spec).generateApp("petstoreproduction",
"https://petstore3.swagger.io/api/v3/openapi.json")

The first argument is the package name if you test code generation of simple HTTP client and client
production make sure to use a different package name. The second and third follow the same rules as
the HTTP client.

Before testing, please start the production via the management portal using this command

Do ##class(Ens.Director).StartProduction("petstoreproduction.Production")

Below is an example of how to use the service “addPet”, but this time with the generated production:

Set messageRequest = ##class(petstoreproduction.requests.addPet).%New()
Set messageRequest.%ContentType = "application/json"
Do messageRequest.PetNewObject().%JSONImport({"id":123,"name":
"Kitty Galore","photoUrls":["https://www.tippett.com/wp-
content/uploads/2017/01/ca2DC049.130.1264.jpg"],"status":"pending"})
; MessageResponse will be an instance of petstoreclient.responses.addPet
Set sc = ##class

Page 8 of 13

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

(petstoreproduction.Utils).invokeHostSync(
"petstoreproduction.bp.SyncProcess", messageRequest,
"petstoreproduction.bs.ProxyService", , .messageResponse)
Write !, "Take a look in visual trace (management portal)"
If $$$ISERR(sc) Do $SYSTEM.Status.DisplayError(sc)
Write !,"Http Status code : ", messageResponse.httpStatusCode,!
Do messageResponse.Pet.%JSONExport()

Now, you can open the visual trace to see the details:

The generated classes in the packages model, requests and responses are pretty similar to the generated code for
a simple HTTP client. Classes from package requests inherit from Ens.Request and classes in package responses
inherit Ens.Response. The default implementation of the business operation is very simple, see this snippet:

Class petstoreproduction.bo.Operation Extends
 Ens.BusinessOperation [ProcedureBlock]
{

Parameter ADAPTER = "EnsLib.HTTP.OutboundAdapter";
Property Adapter As EnsLib.HTTP.OutboundAdapter;
/// Implement operationId : addPet
/// post /pet
Method addPet(requestMessage As
 petstoreproduction.reque
sts.addPet, Output responseMessage As petstoreproduction.responses.addPet) As %Status
{
 Set sc = $$$OK, pHttpRequestIn = ##class(%Net.HttpRequest).%New
(), responseMessage = ##class(petstoreproduction.responses.addPet).%New()
 $$$QuitOnError(requestMessage.LoadHttpRequestObject(pHttpRequestIn))
 $$$QuitOnError(..Adapter
.SendFormDataArray(.pHttpResponse, "post", pHttpRequestIn, , , ..Adapter
.URL_requestMessage.%URL))
 $$$QuitOnError(responseMessage.LoadFromResponse(pHttpResponse, "addPet"))
 Quit sc
}
...
}

Page 9 of 13

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

}

HTTP server-side REST application

Set sc = ##class
(dc.openapi.server.ServerAppGenerator
).Generate("petstoreserver",
"https://petstore3.swagger.io/api/v3/openapi.json", "/petstore/api")

The first argument is the package name to generate classes. The second follows the same rules as the
HTTP client. The third argument is not mandatory, but if present a web application will be created with
the given name (be careful to give a valid web application name).

The class petstoreserver.disp (dispatch %CSP.REST class) looks like a code generated by ^%REST,
performs many checks to accept or reject the request and calls the related service ClassMethod
implementation in petstoreserver.impl. The main difference is the argument passed to the
implementation method, this is petstoreserver.requests object. Example :

Class petstoreserver.disp Extends %CSP.REST [ProcedureBlock]
{

Parameter CHARSET = "utf-8";
Parameter CONVERTINPUTSTREAM = 1;
Parameter IgnoreWrites = 1;
Parameter SpecificationClass = "petstoreserver.Spec";
/// Process request post /pet
ClassMethod addPet() As %Status
{
 Set sc = $$$OK
 Try{
 Set acceptedMedia = $ListFromString("application/json,application/xml,application/x-
www-form-urlencoded")
 If '$ListFind(acceptedMedia,$$$LOWER(%request.ContentType)) {
 Do ##class(%REST.Impl).%ReportRESTError
(..#HTTP415UNSUPPORTEDMEDIATYPE,$$$ERROR($$$RESTContentType,
%request.ContentType)) Quit
 }
 Do ##class(%REST.Impl).%SetContentType($Get(%request.CgiEnvs("HTTP_ACCEPT")))
 If '##class(%REST.Impl).%CheckAccepts(
"application/xml,application/json") Do ##class(%REST.Impl).
%ReportRESTError(..#HTTP406NOTACCEPTABLE,$$$ERROR($$$RESTBadAccepts)) Quit
 If '$isobject(%request.Content) Do ##class(%REST.Impl).
%ReportRESTError(..#HTTP400BADREQUEST,$$$ERROR($$$RESTRequired,"body")) Quit
 Set requestMessage = ##class(petstoreserver.requests.addPet).%New()
 Do requestMessage.LoadFromRequest(%request)
 Set scValidateRequest = requestMessage.RequestValidate()
 If $$$ISERR(scValidateRequest) Do ##class(%REST.Impl).
%ReportRESTError(..#HTTP400BADREQUEST,$$$ERROR(5001,
"Invalid requestMessage object.")) Quit
 Set response = ##class(petstoreserver.impl).addPet(requestMessage)
 Do ##class(petstoreserver.impl).%WriteResponse(response)
 } Catch(ex) {
 Do ##class(%REST.Impl).%ReportRESTError

Page 10 of 13

https://docs.intersystems.com/iris20201/csp/docbook/Doc.View.cls?KEY=GREST_routine

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

(..#HTTP500INTERNALSERVERERROR,ex.AsStat
us(),$parameter("petstoreserver.impl","ExposeServerExceptions"))
 }
 Quit sc
}
...
}

As you can see, the dispatch class call “LoadFromRequest” and “RequestValidate” before calling the
implementation method. These methods have a default implementation, but the code generator cannot
cover all cases. Currently, the most common cases are automatically handled as parameters in "query",
"headers", "path" and body with the content type “application/json”, “application/octet-stream” or
“multipart/form-data”. The developer has to check the implementation to check\complete if needed (by
default the code generator set $$$ThrowStatus($$$ERROR($$$NotImplemented)) for unsupported case).

Example of request class :

As with the ^%REST usage, the "petstoreserver.impl" class contains all the methods related to the
services that the developer has to implement.

Class petstoreserver.impl Extends %REST.Impl [ProcedureBlock]
{

Parameter ExposeServerExceptions = 1;
/// Service implemntation for post /pet
ClassMethod addPet(messageRequest As petstoreserver.requests.addPet) As %Status
{
 ; Implement your service here.
 ; Return {}
 $$$ThrowStatus($$$ERROR($$$NotImplemented))
}

...
}

Short description of the generated packages

 Package name \ Class Name Type Description

petstoreclient.model

petstoreproduction.model

Client-side and server-side It contains all models. These classes extend %JSON.Adaptor to
ease loading objects from JSON.

If a production is generated these classes also extend %Persistent.

petstoreclient.requests

Client-side and server-side Object used for easily initialize %Net.HttpRequest. There is a
class per operation defined in the specification.
If production is generated these classes extend Ens.Request.

Page 11 of 13

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

petstoreproduction.requests
Note: The implementation of this class is different if it’s generated
for server-side or client-side purposes. In the case of the client-
side, all class contains a method “LoadHttpRequestObject”
allowing to load a “%Net.HttpRequest” from this class properties.

If the classes are generated for server-side purposes, each class
contains a method “LoadFromRequest” in order to load the
instance from “%request” object.

petstoreclient.responses

petstoreproduction.responses

Client-side and server-side It’s the opposite of petstoreclient. requests. It allows handling the
response of a %Net.HttpRequest.
If production is generated these classes extend Ens.Response

petstoreclient.HttpClient Client-side Contains all methods to execute HTTP requests, there is one
method by operation defined in the OpenAPI specification.

petstoreproduction. bo.Operation Client-side Operation class has a method per operation defined in the
OpenAPI specification.

petstoreproduction.bp Client-side Two default business processes are defined: sync and async.

petstoreproduction.bs Client-side Contains all empty businesses services to implement.

petstoreproduction.Production Client-side Production configuration setting.

petstoreserver.disp Server-side Class dispatch %CSP.REST.

petstoreserver.Spec Server-side This class contains the OpenAPI specification in an XData block.

petstoreserver.impl Server-side It contains all empty methods related to operations defined in the
OpenAPI specification. This is the class (extend %REST.Impl)
where developers have to implement services.

Development status
OpenAPI-Suite is still a very young product and needs to be more tested and then improved. The
support of OpenAPI 3 is partial, more possibilities could be supported.

The tests were done with the public specification https://petstore3.swagger.io/api/v3/openapi.json and
two other relatively simple ones. Of course, this is not enough to cover all cases. If you have any
specifications to share, I would be happy to use them for my tests.

I think the foundation of the project is good and it can easily evolve, for example, be extended to support
AsyncAPI.

Do not hesitate to leave feedback.

I hope you will enjoy this application and deserves your support for the developer tools contest.

Thank you for reading.

#Interoperability #REST API #InterSystems Ideas Portal #InterSystems IRIS #Open Exchange
Check the related application on InterSystems Open Exchange

Page 12 of 13

https://petstore3.swagger.io/api/v3/openapi.json
https://www.asyncapi.com/
https://community.intersystems.com/tags/interoperability
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/intersystems-ideas-portal
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/open-exchange
https://openexchange.intersystems.com/package/OpenAPI-Suite

OpenAPI Suite - Part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

 Source URL:https://community.intersystems.com/post/openapi-suite-part-1

Page 13 of 13

https://community.intersystems.com/post/openapi-suite-part-1

