gRPC and IRIS Interoperability
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Guillaume Rongier - sep 30,2022 gy read

Open Exchange

gRPC and IRIS Interoperability

grpc-iris-interop

The aim of this proof of concept is to show how the gRPC protocl can be implemented with the IRIS ineroperabilty
module.

architecture

Flask (app.py) IRIS

Business Service (bs.py) . .
REST API to server s P Business Operation (bo.py)

the gRPC Client

Passthrough to

It route GET /users/Sid> to gRPC GetUser
the operation

18080 It route POST /users to gRPC CreateUser

Persist the message
to the database

gRPC Client Celient.py) §RPC Service (server.py)

Convert o json messace . Convert protobuf message
J &) 50051 Lahd &)
to to
a protobuft g IRIS Message
D

On this schema, we can see that the gRPC Service is hosted by IRIS.

This service must invoke the IRIS interoperability module. For that it transforms the protobuf messages to IRIS
messages.

The gRPC client is host by a Flask server for demo purpose, the gRPC client can also be invoke by the python
script.

definition of each file

users.proto

syntax = "proto3";
package users;

service Users {
rpc CreateUser (users.CreateUserRequest) returns (users. CreateUser Response);
rpc GetUser (users. CGetUserRequest) returns (users. Get User Response);

}

nmessage User ({

Page 1 of 9

https://community.intersystems.com/user/guillaume-rongier-1
https://openexchange.intersystems.com/package/grpc-iris-interop
https://openexchange.intersystems.com/package/grpc-iris-interop

gRPC and IRIS Interoperability
Published on InterSystems Developer Community (https://community.intersystems.com)

uint32 id = 1;
string nane =
string dob = 3;
string conpany =
string phone = 5;
string title 6

}

nmessage CreateUser Request {
User user = 1,

}

nmessage CreateUser Response {
User user = 1;

}

nmessage Get User Request {
uint32 id = 1;
}

message Get User Response {
User user = 1,

}

This file is in ./misc/proto/users
This file holds the definition of the gRPC implementation, it's kinda the swagger spec.
To create the implementation classes you have to invoke this command :
pyt hon3 -m grpc_tools.protoc \
--proto_path=./m sc/proto/users/ \
--pyt hon_out =src/ pyt hon/ grpc/ \

--grpc_python_out =src/ pyt hon/ grpc/ \
./ msc/proto/users/users. proto

This command generate two files :

* userspb2.py that hold the definition of the protobuf objects User and messages GetUser and CreateUser
* userspb2grpc.py that hold a Client and Service

obj.py
This module is in ./src/python/grpc/

i mport users_pb2 as users

from dat acl asses i nport datacl ass
fromdatetine inport date

@lat acl ass
cl ass User:

Page 2 of 9

gRPC and IRIS Interoperability
Published on InterSystems Developer Community (https://community.intersystems.com)

this class represents a user

this class have the follow ng attributes:
id: int
name: str
dob: date
conpany: str
phone: str
title: str

id: int =0
name: str "

dob: date dat e. from sof ormat (' 0001-01-01")
conmpany: str ="'

phone: str "

title: str

def to_protobuf(self) -> users. User:

this method converts a User object to a protobuf User object

:return: a protobuf User object

return users. User (
i d=sel f.id,
nanme=sel f . nane,
conpany=sel f. conpany,
dob=sel f. dob. i sof ormat (),
phone=sel f. phone,
title=self.title

)

@t aticnet hod
def from protobuf(user: users.User) -> 'User':

this method converts a protobuf User object to a User object

:param user: a protobuf User object
:return: a User object

return User (
i d=user.i d,
name=user . nane,
dob=dat e. f r om sof or mat (user. dob),
conpany=user. conpany,
phone=user. phone,
title=user.title

This module has on class User.
This class is a dataclass that represents a user.

This class is used to store user information.

Page 3 of 9

gRPC and IRIS Interoperability
Published on InterSystems Developer Community (https://community.intersystems.com)

This class is used to serialize and deserialize user information to protobuf.

This class is used in the IRIS messages.

server.py

This module is in ./src/python/grpc/

from concurrent inport futures

from grongier.pex inport Director

i mport
i mport

users_pb2 grpc as service
users_pb2 as nmessage

i mport grpc

from obj

i mport User

frommsg inport (CreateUser Request, GetUserRequest)

cl ass UsersService(service.UsersServicer):

this class is used to create a server for the gRPC service

it

def

def

i nherits fromusers_pb2 grpc. UsersServi cer

CreateUser (sel f, request, context):

this nethod is used to add a user to the database

:param request: a protobuf CreateUserRequest object
:param context: a grpc. Servi cer Cont ext obj ect
:return: a protobuf CreateUserResponse object

user = User.from protobuf(request. user)
nsg = CreateUser Request (user =user)

service = Director.create_python_busi ness_service("Pyt hon. gRPCServi ce")
iris_response = service.on_process_input (nsg)

response = message. Creat eUser Response(user=iris_response. user.to_protobuf())
return response

CGet User (sel f, request, context):

this method is used to get a user fromthe database

;. param request: a protobuf GetUser Request object
. param context: a grpc. Servi cer Cont ext obj ect
:return: a protobuf GetUserResponse object

Page 4 of 9

gRPC and IRIS Interoperability
Published on InterSystems Developer Community (https://community.intersystems.com)

msg = Cet User Request (i d=request.i d)

service = Director.create_python_busi ness_service("Pyt hon. gRPCSer vi ce")
iris_response = service.on_process_i nput (nsg)

response = nessage. GCet User Response(user=iris_response. user.to_protobuf())
return response
def main():

this function is used to start the server

server = grpc.server (futures. Thr eadPool Execut or (max_wor ker s=10))
servi ce. add_UsersServicer_to_server(UsersService(), server)
server.add_i nsecure_port('[::]:50051")

server.start ()

server.wait_for_terni nation()

This module is used to create a server for the gRPC service.
This module has the following classes:
* UsersService: this class is used to create a server for the gRPC service it inherits from
userspb2grpc.UsersServicer

This module has the following functions:

* main: this function is used to start the server

UsersService has the following functions:

CreateUser:

o This function is used to retrive an Business Service instance with the IRIS Director module.
o |t makes use of User classe to deserialize the protobuf message and convert it in User dataclass.

GetUser:

° This function is used to retrive an Business Service instance with the IRIS Director module.
o |t makes use of User classe to deserialize the protobuf message and convert it in User dataclass.

client.py

This module is in ./src/python/grpc/

from concurrent inport futures

fromdatetine inport date

Page 5 of 9

gRPC and IRIS Interoperability
Published on InterSystems Developer Community (https://community.intersystems.com)

i mport users_pb2_grpc as service
i mport users_pb2 as nessage

i mport grpc
fromobj inport User

class UsersCient:
this class is an hel per class for the gRPC client
it overrides the nmethods of the UsersStub cl ass
to make use of the User cl ass
this class has the foll ow ng nethods:
create user: this nethod is used to create a user
this method converts the request to a User protobuf object
this method calls the original method
get _user: this nmethod is used to get a user
this method calls the original nethod

_init__: create a new stub fromthe channel
channel = None
stub = None
def __init__ (self, channel):

create a new stub fromthe channel
sel f.channel = channel
sel f.stub = service. UsersStub(channel)

def create_user(self, user: User):
this nethod is used to create a user
:param user: a User object
:return: a User object
request = nessage. Creat eUser Request (user =user.to_pr ot obuf())
response = sel f.stub. CreateUser(request)

return User.from protobuf(response. user)

def get user(self, id: int):
this method is used to get a user
:paramid: the id of the user
:return: a User object
request = nessage. Get User Request (i d=i d)
response = sel f.stub. Get User (request)
return User.from protobuf(response. user)

def main():

this function is used to start the client

wi th grpc.insecure_channel ('l ocal host:50051') as channel:
client = Usersdient(channel)

Page 6 of 9

gRPC and IRIS Interoperability
Published on InterSystems Developer Community (https://community.intersystems.com)

user = User (
nane=' John Doe',
dob=dat e. f r omi sof or mat (' 2000- 01-01'),
conmpany=' Acne' ,
phone=' 555- 555- 5555" |
title=' CEO

user = client.create_user(user)
print (user)

user = client.get_user(user.id)
print (user)

This module is used to create a client for the gRPC service.
This module has the following classes:
¢ UsersClient: this class is used to create a client for the gRPC service on init it create a
userspb2grpc.UsersStub with a channel parameter

This module has the following functions:

* main: this function is used to start the client outside of the Flask application

The UsersClient class has the following methods:

createuser:
° this method is used to create a user
o this method converts the request to a User protobuf object
o this method calls the original method

getuser:

° this method is used to get a user
° this method calls the original method

init; create a new stub from the channel

app.py
This module is in ./src/python/grpc/

i mport grpc

fromflask i mport Flask, request, jsonify

Page 7 of 9

gRPC and IRIS Interoperability
Published on InterSystems Developer Community (https://community.intersystems.com)

fromdatetine inport date
fromclient inport Usersdient
fromobj inport User

app = Flask(__nanme_)

create a new client
client = Usersdient(grpc.insecure_channel ('l ocal host:50051'))

@pp.route('/users', methods=['POST])
def create_user():
this nethod is used to create a user
:return: a json object

get the data from the request
data = request.get json()

create a new user fromthe data
user = User(dob=date.fromn sof ornat(data[' dob']) , name=data[' nane'], conpany=data|
' conpany'], phone=data[' phone'], title=data['title'])

create the user
user = client.create_user(user)

return the user
return jsonify(user)

@pp.route('/users/<int:id>, nmethods=['CET'])
def get user(id):

this method is used to get a user

:return: a json object

get the user
user = client.get_user(id)

return the user
return jsonify(user)

start the app if nain

if nanme_ =="'_main__':
app.run('0.0.0.0', port = "8080")

This module is the flask app to server the gRCP client

This module has the following classes:

app:

Page 8 of 9

gRPC and IRIS Interoperability

Published on InterSystems Developer Community (https://community.intersystems.com)

this class is used to create the flask app

it has the following methods:

createuser:

o this method is used to create a user

° it returns a json object

° it converts the request payload to a User object

o it calls the gRPC client to create the user
getuser:

° this method is used to get a user

° it returns a json object

o it calls the gRPC client to get the user by id

This module has the following functions:

* main: this function is used to start the flask app

Run this project

docker - conpose up
Play with it :

POST http://1ocal host: 8080/ users HTTP/ 1.1
Cont ent - Type: application/json

{
"conmpany": "tesdfst",
"dob": "0001-01-01",
"nane": "fsd",
"phone": "fdsffdsf",
"title": "sfd"

}

CET http://1ocal host: 8080/ users/1 HTTP/ 1.1

#Embedded Python #Python #InterSystems IRIS
Check the related application on InterSystems Open Exchange

Source URL:https://community.intersystems.com/post/grpc-and-iris-interoperability

Page 9 of 9

https://community.intersystems.com/tags/embedded-python
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/grpc-iris-interop
https://community.intersystems.com/post/grpc-and-iris-interoperability

