
The simplest template with REST CRUD for InterSystems IRIS with ONLY Python
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Lucas Enard · Aug 17, 2022 9m read
 Open Exchange

The simplest template with REST CRUD for InterSystems IRIS with
ONLY Python
In this GitHub based on this InterSystems community rest api template Guillaume and I have created this example
of all the import CRUD operations usable using ONLY Python on IRIS and using Flask.

Using the IRIS ORM or by simply doing SQL requests as both methods are seen in the GitHub.

1. intersystems-iris-docker-rest-template
This is a template of a REST API application built in python in InterSystems IRIS.
It also has OPEN API spec, can be developed with Docker and VSCode.

1. intersystems-iris-docker-rest-template
2. Prerequisites
3. Installation

3.1. Installation for development
3.2. Management Portal and VSCode
3.3. Having the folder open inside the container

4. How it works
5. How to Work With it

5.1. POST request
5.1.1. Testing POST request
5.1.2. How POST request works
5.2. GET requests
5.2.1. Testing GET request
5.2.2. How GET request works
5.3. PUT request
5.3.1. Testing PUT request
5.3.2. How PUT request works
5.4. DELETE request
5.4.1. Testing DELETE request
5.4.2. How DELETE request works

6. How to start coding
7. What's inside the repo

7.1. Dockerfile
7.2. .vscode/settings.json
7.3. .vscode/launch.json

2. Prerequisites
Make sure you have git and Docker desktop installed.

It is to be noted that the table Sample.Person was already created in advance for the demo using in the
management portal in the sql tab:

Page 1 of 7

https://community.intersystems.com/user/lucas-enard-0
https://openexchange.intersystems.com/package/iris-python-flask-api-template
https://openexchange.intersystems.com/package/iris-python-flask-api-template
https://github.com/grongierisc/iris-python-flask-api-template
https://github.com/intersystems-community/iris-rest-api-template
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.docker.com/products/docker-desktop

The simplest template with REST CRUD for InterSystems IRIS with ONLY Python
Published on InterSystems Developer Community (https://community.intersystems.com)

CREATE TABLE Sample.Person (

 Company VARCHAR(50),
 DOB DATE,
 Name VARCHAR(4096),
 Phone VARCHAR(4096),
 Title VARCHAR(50)
)

3. Installation

3.1. Installation for development
Clone/git pull the repo into any local directory e.g. like it is shown below:

$ git clone https://github.com/grongierisc/iris-python-flask-api-template.git

Open the terminal in this directory and run:

$ DOCKER_BUILDKIT=1 docker-compose up -d --build

3.2. Management Portal and VSCode
This repository is ready for VS Code.

Open the locally-cloned formation-template-python folder in VS Code.

If prompted (bottom right corner), install the recommended extensions.

3.3. Having the folder open inside the container
It is really important to be inside the container before coding.

For this, docker must be on before opening VSCode.

Then, inside VSCode, when prompted (in the right bottom corner), reopen the folder inside the container so you will
be able to use the python components within it.

The first time you do this it may take several minutes while the container is readied.

More information here

By opening the folder remote you enable VS Code and any terminals you open within it to use the python
components within the container. Configure these to use /usr/irissys/bin/irispython

Page 2 of 7

https://code.visualstudio.com/
https://code.visualstudio.com/docs/remote/containers

The simplest template with REST CRUD for InterSystems IRIS with ONLY Python
Published on InterSystems Developer Community (https://community.intersystems.com)

4. How it works
The app.py, once launched (inside the container) will gather CRUD request.

Depending on the type of the request, the right message will be created to send to the FlaskService, this service
will call the CrudPerson operation that will, depending on the type of the message send from the service to it,
dispatch the information needed to do the action requested.

For more details you can check the How it works part of this fully documented demo.

5. How to Work With it
This template creates /crud REST web-application on IRIS which implements 4 types of communication: GET,
POST, PUT and DELETE aka CRUD operations.
These interface works with a sample persistent class Person found in src/python/person/obj.py.

First of all, it is needed to start the 'app.py' situated in src/python/person/app.py using flask.

To do this, go in the app.py file, then to the run and debug window in VSCode and select Python: Flask then run.
This will run the app.

5.1. POST request

5.1.1. Testing POST request

Create a POST request, for example in Postman or in RESTer for mozilla, with raw data in JSON like:

{"name":"Elon Musk","title":"CEO","company":"Tesla","phone":"123-123-1233","dob":"198
2-01-19"}

Using Content-Type as application/json

Adjust the authorisation if needed - it is basic for container with default login and password for IRIS Community
edition container.

Send the POST request to localhost:5000/persons/

This will create a record in the table Sample.Person of IRIS and return the id of the newly added Person

of the POST request to add Elon Musk to the table.

5.1.2. How POST request works

 def create_person(self,request:CreatePersonRequest):
 """
 > Create a new person in the database and return the new person's ID

 :param request: The request object that was passed in from the client
 :type request: CreatePersonRequest
 :return: The ID of the newly created person.
 """

Page 3 of 7

https://github.com/grongierisc/interoperability-embedded-python

The simplest template with REST CRUD for InterSystems IRIS with ONLY Python
Published on InterSystems Developer Community (https://community.intersystems.com)

 # sqlInsert = 'insert into Sample.Person values (?,?,?,?,?)'
 # iris.sql.exec(sqlInsert,request.person.company,dob,request.person.name,requ
est.person.phone,request.person.title)

 # IRIS ORM
 person = iris.cls('Sample.Person')._New()
 if (v:=request.person.company) is not None: person.Company = v
 if (v:=request.person.name) is not None: person.Name = v
 if (v:=request.person.phone) is not None: person.Phone = v
 if (v:=request.person.title) is not None: person.Title = v
 if (v:=request.person.dob) is not None: person.DOB = v

 Utils.raise_on_error(person._Save())

 return CreatePersonResponse(person._Id())

Using IRIS ORM we can create a new Person and save into our database.

5.2. GET requests

5.2.1. Testing GET request

To test GET you need to have some data. You can create it with a POST request.

This REST API exposes two GET requests: all the data and one record.
To get all the data in JSON call:

localhost:5000/persons/all

To request the data for a particular record provide the id in GET request like 'localhost:5000/persons/id', here is an
example:

localhost:5000/persons/1

This will return JSON data for the person with ID=1, something like that:

{"name":"Elon Musk","title":"CEO","company":"Tesla","phone":"123-123-1233","dob":"198
2-01-19"}

5.2.2. How GET request works

 def get_person(self,request:GetPersonRequest):
 """
 > The function takes a `GetPersonRequest` object, executes a SQL query, and r
eturns a
 `GetPersonResponse` object

 :param request: The request object that is passed in
 :type request: GetPersonRequest
 :return: A GetPersonResponse object

Page 4 of 7

The simplest template with REST CRUD for InterSystems IRIS with ONLY Python
Published on InterSystems Developer Community (https://community.intersystems.com)

 """
 sql_select = """
 SELECT
 Company, DOB, Name, Phone, Title
 FROM Sample.Person
 where ID = ?
 """
 rs = iris.sql.exec(sql_select,request.id)
 response = GetPersonResponse()
 for person in rs:
 response.person= Person(company=person[0],dob=person[1],name=person[2],ph
one=person[3],title=person[4])
 return response

 def get_all_person(self,request:GetAllPersonRequest):
 """
 > This function returns a list of all the people in the Person table

 :param request: The request object that is passed to the service
 :type request: GetAllPersonRequest
 :return: A list of Person objects
 """

 sql_select = """
 SELECT
 Company, DOB, Name, Phone, Title
 FROM Sample.Person
 """
 rs = iris.sql.exec(sql_select)
 response = GetAllPersonResponse()
 response.persons = list()
 for person in rs:
 response.persons.append(Person(company=person[0],dob=person[1],name=perso
n[2],phone=person[3],title=person[4]))
 return response

This time, using the iris python sql.exec function, we can directly run SQL code inside the IRIS database, gather
the information needed and send it back to the API and to the user.

5.3. PUT request

5.3.1. Testing PUT request

PUT request could be used to update the records. This needs to send the similar JSON as in POST request above
supplying the id of the updated record in URL.
For example we want to change the record with id=5. Prepare the JSON in raw like following:

{"name":"Jeff Besos","title":"CEO","company":"Amazon","phone":"123-123-1233","dob":"1
982-01-19"}

and send the put request to:

localhost:5000/persons/5

Page 5 of 7

The simplest template with REST CRUD for InterSystems IRIS with ONLY Python
Published on InterSystems Developer Community (https://community.intersystems.com)

5.3.2. How PUT request works

 def update_person(self,request:UpdatePersonRequest):
 """
 > Update a person in the database

 :param request: The request object that will be passed to the service
 :type request: UpdatePersonRequest
 :return: UpdatePersonResponse()
 """

 # IRIS ORM
 if iris.cls('Sample.Person')._ExistsId(request.id):
 person = iris.cls('Sample.Person')._OpenId(request.id)
 if (v:=request.person.company) is not None: person.Company = v
 if (v:=request.person.name) is not None: person.Name = v
 if (v:=request.person.phone) is not None: person.Phone = v
 if (v:=request.person.title) is not None: person.Title = v
 if (v:=request.person.dob) is not None: person.DOB = v
 Utils.raise_on_error(person._Save())

 return UpdatePersonResponse()

Using IRIS ORM we can check if the id leads to a Person, if it does, we can update it using our new information
and save it into our database.

5.4. DELETE request

5.4.1. Testing DELETE request

For delete request this REST API expects only the id of the record to delete. E.g. if the id=5 the following DELETE
call will delete the record:

localhost:5000/persons/5

5.4.2. How DELETE request works

 def delete_person(self,request:DeletePersonRequest):
 """
 > Delete a person from the database

 :param request: The request object that is passed to the service
 :type request: DeletePersonRequest
 :return: The response is being returned.
 """

 sql_select = """
 DELETE FROM Sample.Person as Pers
 WHERE Pers.id = ?
 """
 rs = iris.sql.exec(sql_select,request.id)
 response = DeletePersonResponse()
 return response

Page 6 of 7

The simplest template with REST CRUD for InterSystems IRIS with ONLY Python
Published on InterSystems Developer Community (https://community.intersystems.com)

This time, using the iris python sql.exec function, we can directly run SQL code inside the IRIS database and delete
the person.

6. How to start coding
This repository is ready to code in VSCode with InterSystems plugins.
Open /src/python/person/app.py to change anything on the api.
Open /src/python/person/bo.py to be able to change things related to the internal requests, this is where you can
use SQL - it will be compiled in running IRIS docker container.

7. What's inside the repo

7.1. Dockerfile
The simplest dockerfile to start IRIS.
Use the related docker-compose.yml to easily setup additional parametes like port number and where you map
keys and host folders.

7.2. .vscode/settings.json
Settings file to let you immedietly code in VSCode with VSCode ObjectScript plugin)

7.3. .vscode/launch.json
Config file if you want to debug with VSCode ObjectScript

#API #Embedded Python #Python #InterSystems IRIS
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/simplest-template-rest-crud-intersystems-iris-only-python

Page 7 of 7

https://marketplace.visualstudio.com/items?itemName=daimor.vscode-objectscript
https://community.intersystems.com/tags/api
https://community.intersystems.com/tags/embedded-python
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/iris-python-flask-api-template
https://community.intersystems.com/post/simplest-template-rest-crud-intersystems-iris-only-python

