Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Michael Braam - Aug 17,2022 12 read

Leveraging the external messaging API in InterSystems IRIS

Being interoperable is more and more important nowadays. InterSystems IRIS 2022.1 comes with a new
messaging API to communicate with event streaming platforms like Kafka, AWS SQS/SNS, JMS and RabbitMQ.

This article shows how you can connect to Kafka and AWS SQS easily.
We start with a brief discussion of the basic concepts and terms of event streaming platforms.

Event streaming platforms purpose and common terms

Event streaming platforms like Kafka or AWS SQS are capable to consume a unbound stream of events in a very
high frequency and can react to events. Consumers read the data from streams for further processing. They are
often used in loT environments.

Common terms in this arena are:

* Topic/Queue, the place where data is stored

* Producer, creates and sends data (events, messages) to a topic or queue

¢ Consumer, reads events/messages from one or more topics or queues

* Publish/Subscribe, producers send data to a queue/topic (publish), consumers subscribe to a topic/queue
and get automatically notified if new data arrives

* Polling, consumers have to actively poll a topic/queue for new data

Why are they used?
¢ Decoupling of producers and consumers
* Highly scalable for real time data

Do | really need them? As a InterSystems IRIS developer probably not, but you are not alone...

The external messaging API

The new API classes are located in the %External.Messaging package. It contains generic Client-, Settings- and
Message classes. The specialized classes for Kafka, AWS SQS/SNS, JMS, RabbitMQ are subclasses of these
generic classes.

The basic communication flow is:
1. Create a settings object for your target platform. This is also responsible for the authentication against the
target platform.
2. Create a specific client object and pass the settings object to it

3. Create a message object and send it to the target.

The following sections demonstrate how you can communicate with Kafka and AWS SQS (Simple Queue Service).

Interacting with Kafka

Page 1 of 11

https://community.intersystems.com/user/michael-braam
https://kafka.apache.org/
https://aws.amazon.com/sqs/?nc1=h_ls

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's start with a Kafka example. First we create a class which leverages the new %External Messaging API to
create a topic, send and receive a message to and from Kafka.

It first creates a Kafka settings object

set tSettings = ##cl ass(%Ext ernal . Messagi ng. Kaf kaSet ti ngs) . %0New()
set tSettings.servers = $$SKAFKASERVER
set tSettings.groupld = "iris-consuner"

After setting the Kafka server address it sets a Kafka group id.

With these settings a Kafka client object is created:

set tdient = ##cl ass(%external . Messagi ng. Cl i ent
). Creat eKaf kaCl i ent (t Settings. ToOJSON(), .t Sc)

It then creates a topic by invoking the CreateTopic() method of the Kafka client:

Set tSC = tdient.CreateTopi c(pTopi cNane, t Nunber Of Partitions,tReplicationFactor)

Below is the full code sample:

I ncl ude Kaf ka. Settings

O ass Kafka.api [Abstract]
{

Cl assMet hod CreateTopi c(pTopi cName As %Btring) As %status

{
#dimtSc as %Gtatus = $$IOK

try {
set tSettings = ##cl ass(%Ext ernal . Messagi ng. Kaf kaSet ti ngs) . ¥New()
set tSettings.servers = $$$KAFKASERVER
set tSettings.groupld = "iris-consuner”
set tdient = ##cl ass(%external . Messagi ng. d i ent
). Creat eKaf kaCl i ent (t Settings. ToOJSON(), .t Sc)
$$$Thr owOnEr r or (t Sc)
Set tNunberOPartitions = 1
Set tReplicationFactor =1
Set
tSC = tdient.CreateTopi c(pTopi cNane, t Nunber Of Partitions,tReplicationFactor)
$ESThr owOnEr r or (t SC)
$ESThrowOnError (tCient. C ose())

}
catch tEx {
set tSc = tEx. AsStatus()
}
return tSc
}
}

Page 2 of 11

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

After creating a topic we can send and receive messages from Kafka. The code is similiar to the above code

Cl assMet hod SendMessage(pMessage As %String, pTopic As ¥%String) As %status
{
#dimtSettings as %&xternal . Messagi ng. Kaf kaSet ti ngs
#dimtdient as %kxternal . Messagi ng. Kaf kad i ent
#di m t Message as %kxt er nal . Messagi ng. Kaf kaMessage
#dimtSc as ¥Status = $$SK
try {
set tSettings = ##cl ass(%Ext er nal . Messagi ng. Kaf kaSet ti ngs) . ¥New()
set tSettings.servers = $$$KAFKASERVER
set tSettings.groupld = "iris-consuner”
set t Message = ##cl ass(%kxt er nal . Messagi ng. Kaf kaMessage) . ¥New()
set tMessage.topic = pTopic
set tMessage.val ue = pMessage
set tdient = ##cl ass(%external . Messagi ng. Cl i ent
). Creat eKaf kaCl i ent (t Settings. ToOJSON(), .t Sc)
$$$Thr owOnEr r or (t Sc)
Set producerSettings =
"{""key.serializer"":""org.apache. kaf ka. cormon. seri alization. StringSerializer""}"
$$$Thr owOnError (t d i ent . Updat ePr oducer Conf i g(producer Setti ngs))
$$SThr owOnError (t C i ent. SendMessage(t Message))
$ESThrowOnError (tClient. C ose())

}
catch tEx {
set tSc = tEx. AsStatus()

}

return tSc
}
O assMet hod Recei veMessage(pTopi cNane As ¥%String, pGoupld As %string = "iris-
consuner", CQutput pMessages) As %Gt atus
{

#dimtSetti ngs as %kxternal . Messagi ng. Kaf kaSet ti ngs

#dimtdient as %kxternal . Messagi ng. Kaf kad i ent

#di m t Message as %kxt er nal . Messagi ng. Kaf kaMessage

#dimtSc as %Btatus = $$$K

try {
set tSettings = ##cl ass(%Ext ernal . Messagi ng. Kaf kaSet ti ngs) . %0New()
set tSettings.servers = $$SKAFKASERVER
set tSettings.groupld pG oupl d

set tdient = ##cl ass(%external . Messagi ng. d i ent
). Creat eKaf kaC i ent (tSettings. ToOJSON(), .t Sc)
$ESThr owOnEr r or (t Sc)
Set producerSettings =
"{""key.serializer"":""org. apache. kaf ka. cormon. seri alization. StringSerializer""}"
$$$Thr owOnError (t A i ent. Updat ePr oducer Confi g(producer Setti ngs))
$$$Thr owOnError (t A i ent. Recei veMessage(pTopi cNanme, . pMessages))
$$SThrowOnError (tCient. C ose())
}
catch tEx {
set tSc = tEx.AsStatus()

}

return tSc

Page 3 of 11

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's try it. | have a Kafka instance running and first we create a topic community with the CreateTopic method
above:

mmunity™)

Please ignore the log4j warnings here. The method returns a status code OK. So the topic was created. Next let's
send a message to this topic. To verify that the message is sent to the topic, | have a generic Kafka consumer
running. This consumer listens to the topic community:

S bin/kafka-console-consumer.sh --topic community --bootstrap-server localhost:9092

So let's send a message to this topic. I'll send a JSON-String to it, but basically you can send any message format
to a topic.

further details.

Let's check if the consumer received the message:

$ bin/kafka-console-consumer.sh --topic community --bootstrap-server localhost:9892

{"content”:"Hello InterSystems Developer Community!"}

The message was successfully received by the consumer.

Receiving messages and deleting topics is similiar to the above sample. Below is the full sample implementation.
The include file Kafka.settings only contains a macro definition: #define KAFKASERVER <Kafka server location
and port>.

I ncl ude Kafka. Settings

Cl ass Kafka.api [Abstract]
{

Cl assMet hod Creat eTopi c(pTopi cName As ¥String) As %Gt at us

{
#dimtSc as %Status = $$POK

try {
set tSettings = ##cl ass(%Ext ernal . Messagi ng. Kaf kaSet ti ngs) . %New()
set tSettings.servers = $$$SKAFKASERVER
set tSettings.groupld = "iris-consuner"

Page 4 of 11

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

set tdient = ##cl ass(%external . Messagi ng. d i ent

). Creat eKaf kaCl i ent (t Settings. ToJSON(), . t Sc)
$$$Thr owOnEr r or (t Sc)
Set tNunberOfPartitions = 1
Set tReplicationFactor =1
Set

tSC = tdient.CreateTopi c(pTopi cNanme, t Nunber Of Partitions,tReplicationFactor)

$$$Thr owOnEr r or (t SC)
$$$ThrowOnError (tdient. d ose())

}
catch tEx {
set tSc = tEx. AsStatus()
}
return tSc
}
Cl assMet hod Del et eTopi c(pTopi cName As %Btring) As %status
{

#dimtSc as Status = $$SK
try {
set tSettings = ##cl ass(%Ext ernal . Messagi ng. Kaf kaSet ti ngs) . ¥New()
set tSettings.servers = $$$KAFKASERVER
set tSettings.groupld = "iris-consuner”
set tdient = ##cl ass(%external . Messagi ng. d i ent
). Creat eKaf kaCl i ent (t Settings. ToJSON(), .t Sc)
$$$Thr owOnEr r or (t Sc)
Set tNunberOfPartitions = 1
Set tReplicationFactor =1
Set tSC = tdient. Del eteTopi c(pTopi cNane)
$$$Thr owOnEr r or (t SC)
$$$ThrownError (tdient. d ose())
}
catch tEx {
set tSc = tEx. AsStat us()

}

return tSc

}

Cl assMet hod SendMessage(pMessage As %string, pTopic As ¥%String) As %status
{
#dimtSettings as %&xternal . Messagi ng. Kaf kaSet ti ngs
#dimtdient as %kxternal . Messagi ng. Kaf kad i ent
#di m t Message as %kxt er nal . Messagi ng. Kaf kaMessage
#dimtSc as %Btatus = $$$SK
try {
set tSettings = ##cl ass(%Ext ernal . Messagi ng. Kaf kaSet ti ngs) . ¥New()
set tSettings.servers = $$$KAFKASERVER
set tSettings.groupld = "iris-consuner”
set t Message = ##cl ass(%kxt er nal . Messagi ng. Kaf kaMessage) . ¥New()
set tMessage.topic = pTopic
set tMessage.val ue = pMessage
set tdient = ##class(%external . Messagi ng. Cient
). Creat eKaf kaCl i ent (t Settings. ToOJSON(), .t Sc)
$$SThr owOnEr r or (t Sc)
Set producerSettings =
"{""key.serializer"":""org.apache. kaf ka. cormon. seri alization. StringSerializer""}"
$$$Thr owOnError (t d i ent . Updat ePr oducer Conf i g(producer Setti ngs))

Page 5 of 11

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

$$$ThrowOnError (t Cl i ent. SendMessage(t Message))
$$$ThrowOnError (tClient. d ose())

}
catch tEx {
set tSc = tEx. AsStatus()

}

return tSc
}
Cl assMet hod Recei veMessage(pTopi cNane As ¥%string, pGoupld As %Btring = "iris-
consumer”, CQutput pMessages) As %&t at us
{

#dimtSetti ngs as %&xternal . Messagi ng. Kaf kaSet ti ngs

#dimtdient as %kxternal . Messagi ng. Kaf kad i ent

#di m t Message as %kxt er nal . Messagi ng. Kaf kaMessage

#dimtSc as %Btatus = $$$K

try {
set tSettings = ##cl ass(%Ext ernal . Messagi ng. Kaf kaSet ti ngs) . %0New()
set tSettings.servers = $$$SKAFKASERVER
set tSettings.groupld pG oupl d

set tdient = ##cl ass(%ext ernal . Messagi ng. d i ent
). Creat eKaf kaCl i ent (t Settings. ToJSON(), .t Sc)
$$$Thr owOnEr r or (t Sc)
Set producerSettings =
"{""key.serializer"":""org.apache. kaf ka. conmon. seri alization. StringSerializer""}"
$$$Thr owOnError (t A i ent . Updat ePr oducer Confi g(producer Settings))
$$$Thr owOnError (t A i ent. Recei veMessage(pTopi cNane, . pMessages))

$$SThrowOnError (tCient. d ose())

}
catch tEx {
set tSc = tEx. AsStatus()
}
return tSc
}
}

Interacting with AWS SQS

How would you communicate with AWS SQS (Simple Queue Service)?

The basic procedure is pretty similiar. But AWS requires authentication and AWS doesn't use the term topic. They
talk about queues. You can send a message to a queue and consumers can receive messages from one or more
gueues.

Similar to my api class above I've created something for AWS SQS.

C ass AWB. SQS. api [Abstract]
{

O assMet hod SendMessage(pMessage As ¥string, pQueue As %String) As %status

Page 6 of 11

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

#dimtSettings as %kxternal . Messagi ng. S@SSet ti ngs

#di m t Message as %kxt er nal . Messagi ng. SQSMessage

#dimtdient as %kxternal . Messagi ng. SQSA i ent

#dimtSc as %Btatus = $$$SK

try {
$$$Thr owOnEr r or (##cl ass(AWS. Uti | s). Get Credenti al s(.tCredential s))
set tSettings = ##cl ass(%Ext ernal . Messagi ng. SQSSet ti ngs) . ¥Y0New()
set tSettings.accessKey = tCredential s("aws_access_key id")
set tSettings.secretkKey = tCredential s("aws_secret _access_key")
set tSettings.sessionToken = tCredential s("aws_sessi on_t oken")
set tSettings.region = "eu-central -1"
set t Message = ##cl ass(%Ext er nal . Messagi ng. SQSMessage) . %0New()
set t Message. body = pMessage
set tMessage. queue = pQueue

set tdient = ##cl ass(%external . Messagi ng. Cl i ent
).CreateS@SC ient(tSettings. TOJSON(), .t Sc)

$$$Thr owOnEr r or (t Sc)

$$$Thr omOnError (t d i ent. SendMessage(t Message))

}
catch tEx {

set tSc = tEx. AsStatus()
}

return tSc

}

Cl assMet hod Recei veMessage(pQueueNane As %String, Qutput pMessages) As %St atus
{
#dimtSettings as %kxternal . Messagi ng. SQSSet ti ngs
#dimtCdient as %kxternal . Messagi ng. SQSA i ent
#dimtSc as %Btatus = $$$SK
try {
$ESThr owOnEr r or (##cl ass(AWB. Uil s). Get Credential s(.tCredentials))
set tSettings = ##cl ass(%kext ernal . Messagi ng. SQSSet ti ngs) . ¥New()
set tSettings.accessKey = tCredential s("aws_access_key_id")
set tSettings.secretKey = tCredential s("aws_secret_access_key")
set tSettings.sessionToken = tCredential s("aws_sessi on_t oken")
set tSettings.region = "eu-central -1"
set tdient = ##class(%external . Messagi ng. Cient
).CreateS@C ient(tSettings. TOJSON(), .t Sc)
$$SThr owOnEr r or (t Sc)
$$$Thr owOnError (t A i ent. Recei veMessage(pQueueNane, . pMessages))

}
catch tEx {

set tSc = tEx. AsStatus()
}

return tSc

}

Gl assMet hod Del et eMessage(pQueueNane As %5tring, pReceiptHandle As %&tring) As
oGt at us
{

#dimtSettings as %kxternal . Messagi ng. SQSSetti ngs

#dimtCient as %kxternal . Messagi ng. SQSA i ent

Page 7 of 11

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

#dimtSc as %Btatus = $$$SK

try {
$$$Thr owOnEr r or (##cl ass(AWS. Uil s). Get Credenti al s(.tCredenti al s))
set tSettings = ##cl ass(%Ext ernal . Messagi ng. SQSSet t i ngs) . ¥0New()
set tSettings.accessKey = tCredential s("aws_access_key_id")
set tSettings.secretKey = tCredential s("aws_secret_access_key")
set tSettings.sessionToken = tCredential s("aws_sessi on_t oken")
set tSettings.region = "eu-central -1"

set tdient = ##cl ass(
%Xt ernal . Messaging.Client).CreateSQSCl i ent(tSettings. ToOJSON(), .t Sc)

$ESThr owOnEr r or (t Sc)
$$$ThrowOnError (t A i ent. Del et eMessage(pQueueNane, pRecei pt Handl e))

}
catch tEx {

set tSc = tEx. AsStatus()
}

return tSc

}

Cl assMet hod Creat eQueue(pQueueNane As ¥Btring) As ¥t atus
{
#dimtSettings as %External . Messagi ng. SQSSet ti ngs
#dimtdient as %kxternal . Messagi ng. SQSA i ent
#di m t SQSSet ti ngs as %Ext er nal . Messagi ng. SQSQueueSet ti ngs
#dimtSc as ¥Btatus = $$$K
try {
$$$Thr owOnEr r or (##cl ass(AWS. Uti | s). Get Credenti al s(.tCredential s))
set tSettings = ##cl ass(%Ext ernal . Messagi ng. SQSSet t i ngs) . ¥New()
set tSettings.accessKey = tCredential s("aws_access_key id")
set tSettings.secretKey = tCredential s("aws_secret_access_key")
set tSettings.sessionToken = tCredential s("aws_sessi on_t oken")
set tSettings.region = "eu-central -1"
set tdient = ##cl ass(%external . Messagi ng. d i ent
).CreateS@C ient(tSettings. ToJSON(), .tSc)
$$$Thr owOnEr r or (t Sc)

set tSQSSettings = ##cl ass(%kext er nal . Messagi ng. SQSQueueSet ti ngs) . ¥New()

$$$Thr owOnError (t A i ent. Creat eQueue(pQueueNane, t SQSSet t i ngs))

}
catch tEx {

set tSc = tEX. AsStatus()
}

return tSc

}

O assMet hod Del et eQueue(pQueueNane As ¥Gtring) As %status

{
#dimtSettings as %kxternal . Messagi ng. SQSSet ti ngs
#dimtdient as %kxternal . Messagi ng. SQSA i ent
#di m t SQSSet ti ngs as %Ext ernal . Messagi ng. SQGSQueueSet ti ngs
#dimtSc as ¥Status = $$SK

try {
$ESThr owOnEr r or (##cl ass(AWB. Uil s). Get Credential s(.tCredential s))

Page 8 of 11

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

set tSettings = ##cl ass(%kext ernal . Messagi ng. SQSSet ti ngs) . ¥New()
set tSettings.accessKey = tCredential s("aws_access_key_id")

set tSettings.secretKey = tCredential s("aws_secret_access_key")
set tSettings.sessionToken = tCredential s("aws_sessi on_t oken")
set tSettings.region = "eu-central -1"

set tdient = ##class(%external . Messagi ng. Cient

).CreateS@C ient(tSettings. TOJSON(), .t Sc)

$$$Thr owOnEr r or (t Sc)

$$SThr owOnError (t C i ent. Del et eQueue(pQueueNane))

}
catch tEx {
set tSc = tEx. AsStatus()
}
return tSc
}
}

It contains methods for creating and deleting queues and sending and receiving messages to and from a queue.

One of the key points here is how to authenticate. | didn't want to have my credentials in my code. So | created a
little helper method to retrieve the credentials from my local credentials file and return it as subscripted array to use
it in my api methods:

Cl assMet hod Get Credenti al s(Qutput pCredentials) As %t atus

{
#dimtSc as %Gtatus = $EIK
set tFilenanme = "/dur/.aws/credential s"
try {
set tCredential sFile = ##cl ass(%5tream Fi | eCharacter). %\New)
$$$Thr owOnError (t Credenti al sFi | e. Li nkToFi | e(t Fi | enane))
// first read the header
set tBuffer = tCredenti al sFil e. ReadLi ne()
for i=1:1:3 {
set tBuffer = tCredential sFil e. ReadLi ne()
set pCredential s($pi ece(tBuffer,” =",1)) = $tr($pi ece(tBuffer,
$c(13))
}
}
catch tEx {
set tSc = tEx. AsStatus()
}
return tSc
}

"= 2),

To complete this article, let's create a queue community in the AWS region "eu-central-1" (Frankfurt, Germany).

Page 9 of 11

Leveraging the external messaging APl in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

EVENTS>set tSc class (AWS. S pi) .CreateQueue ("community™)

EVENTS>write tSc
1

The queue has been successfully created and is visible in the AWS console for my account:

Amazon SQS Queues

Queues (2) ‘E
Q 1 ®
Name A Type Created Messages available Messages in flight Encryption Content-based deduplication
community Standard 16.8.2022, 0 0 Disabled

12:36:07 MESZ

Next, let's send a message to this queue:

nmunity!™}

mmunity ™)

The method call returns 1. So the message has been successfully sent.

Finally let's poll the queue from the AWS console:

Message: 60bbcfOb-90c1-45a4-86d3-ba9bc8a3b4a3 X

Details Attributes

{"content":"Hello InterSystems Developer Community!"}

The message has been successfully delivered to the queue.

Conclusion

The external messaging api in InterSystems IRIS 2022.1 makes it really simple to communicate with event
streaming platforms.
Hope you find this useful.

#API #AWS #Deployment #InterSystems IRIS #InterSystems IRIS for Health

Page 10 of 11

https://community.intersystems.com/tags/api
https://community.intersystems.com/tags/aws
https://community.intersystems.com/tags/deployment
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris-health

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Source URL:https://community.intersystems.com/post/leveraging-external-messaging-api-intersystems-iris

Page 11 of 11

https://community.intersystems.com/post/leveraging-external-messaging-api-intersystems-iris

