
Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Michael Braam · Aug 17, 2022 12m read

Leveraging the external messaging API in InterSystems IRIS
Being interoperable is more and more important nowadays. InterSystems IRIS 2022.1 comes with a new
messaging API to communicate with event streaming platforms like Kafka, AWS SQS/SNS, JMS and RabbitMQ.

This article shows how you can connect to Kafka and AWS SQS easily.
We start with a brief discussion of the basic concepts and terms of event streaming platforms.

Event streaming platforms purpose and common terms

Event streaming platforms like Kafka or AWS SQS are capable to consume a unbound stream of events in a very
high frequency and can react to events. Consumers read the data from streams for further processing. They are
often used in IoT environments.

Common terms in this arena are:

Topic/Queue, the place where data is stored
Producer, creates and sends data (events, messages) to a topic or queue
Consumer, reads events/messages from one or more topics or queues
Publish/Subscribe, producers send data to a queue/topic (publish), consumers subscribe to a topic/queue
and get automatically notified if new data arrives
Polling, consumers have to actively poll a topic/queue for new data

Why are they used?

Decoupling of producers and consumers
Highly scalable for real time data

Do I really need them? As a InterSystems IRIS developer probably not, but you are not alone...

The external messaging API

The new API classes are located in the %External.Messaging package. It contains generic Client-, Settings- and
Message classes. The specialized classes for Kafka, AWS SQS/SNS, JMS, RabbitMQ are subclasses of these
generic classes.

The basic communication flow is:

1. Create a settings object for your target platform. This is also responsible for the authentication against the
target platform.

2. Create a specific client object and pass the settings object to it
3. Create a message object and send it to the target.

The following sections demonstrate how you can communicate with Kafka and AWS SQS (Simple Queue Service).

Interacting with Kafka

Page 1 of 11

https://community.intersystems.com/user/michael-braam
https://kafka.apache.org/
https://aws.amazon.com/sqs/?nc1=h_ls

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's start with a Kafka example. First we create a class which leverages the new %External Messaging API to
create a topic, send and receive a message to and from Kafka.

It first creates a Kafka settings object

set tSettings = ##class(%External.Messaging.KafkaSettings).%New()
set tSettings.servers = $$$KAFKASERVER
set tSettings.groupId = "iris-consumer"

After setting the Kafka server address it sets a Kafka group id.

With these settings a Kafka client object is created:

set tClient = ##class(%External.Messaging.Client
).CreateKafkaClient(tSettings.ToJSON(),.tSc)

It then creates a topic by invoking the CreateTopic() method of the Kafka client:

Set tSC = tClient.CreateTopic(pTopicName,tNumberOfPartitions,tReplicationFactor)

 Below is the full code sample:

Include Kafka.Settings

Class Kafka.api [Abstract]
{

ClassMethod CreateTopic(pTopicName As %String) As %Status
{
 #dim tSc as %Status = $$$OK
 try {
 set tSettings = ##class(%External.Messaging.KafkaSettings).%New()
 set tSettings.servers = $$$KAFKASERVER
 set tSettings.groupId = "iris-consumer"
 set tClient = ##class(%External.Messaging.Client
).CreateKafkaClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 Set tNumberOfPartitions = 1
 Set tReplicationFactor = 1
 Set
 tSC = tClient.CreateTopic(pTopicName,tNumberOfPartitions,tReplicationFactor)
 $$$ThrowOnError(tSC)
 $$$ThrowOnError(tClient.Close())
 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

}

Page 2 of 11

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

After creating a topic we can send and receive messages from Kafka. The code is similiar to the above code

ClassMethod SendMessage(pMessage As %String, pTopic As %String) As %Status
{
 #dim tSettings as %External.Messaging.KafkaSettings
 #dim tClient as %External.Messaging.KafkaClient
 #dim tMessage as %External.Messaging.KafkaMessage
 #dim tSc as %Status = $$$OK
 try {
 set tSettings = ##class(%External.Messaging.KafkaSettings).%New()
 set tSettings.servers = $$$KAFKASERVER
 set tSettings.groupId = "iris-consumer"
 set tMessage = ##class(%External.Messaging.KafkaMessage).%New()
 set tMessage.topic = pTopic
 set tMessage.value = pMessage
 set tClient = ##class(%External.Messaging.Client
).CreateKafkaClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 Set producerSettings =
"{""key.serializer"":""org.apache.kafka.common.serialization.StringSerializer""}"
 $$$ThrowOnError(tClient.UpdateProducerConfig(producerSettings))
 $$$ThrowOnError(tClient.SendMessage(tMessage))
 $$$ThrowOnError(tClient.Close())

 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

ClassMethod ReceiveMessage(pTopicName As %String, pGroupId As %String = "iris-
consumer", Output pMessages) As %Status
{
 #dim tSettings as %External.Messaging.KafkaSettings
 #dim tClient as %External.Messaging.KafkaClient
 #dim tMessage as %External.Messaging.KafkaMessage
 #dim tSc as %Status = $$$OK
 try {
 set tSettings = ##class(%External.Messaging.KafkaSettings).%New()
 set tSettings.servers = $$$KAFKASERVER
 set tSettings.groupId = pGroupId

 set tClient = ##class(%External.Messaging.Client
).CreateKafkaClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 Set producerSettings =
"{""key.serializer"":""org.apache.kafka.common.serialization.StringSerializer""}"
 $$$ThrowOnError(tClient.UpdateProducerConfig(producerSettings))
 $$$ThrowOnError(tClient.ReceiveMessage(pTopicName, .pMessages))
 $$$ThrowOnError(tClient.Close())
 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc

Page 3 of 11

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

}

Let's try it. I have a Kafka instance running and first we create a topic community with the CreateTopic method
above:

Please ignore the log4j warnings here. The method returns a status code OK. So the topic was created. Next let's
send a message to this topic. To verify that the message is sent to the topic, I have a generic Kafka consumer
running. This consumer listens to the topic community:

So let's send a message to this topic. I'll send a JSON-String to it, but basically you can send any message format
to a topic.

Let's check if the consumer received the message:

The message was successfully received by the consumer.

Receiving messages and deleting topics is similiar to the above sample. Below is the full sample implementation.
The include file Kafka.settings only contains a macro definition: #define KAFKASERVER <Kafka server location
and port>.

Include Kafka.Settings

Class Kafka.api [Abstract]
{

ClassMethod CreateTopic(pTopicName As %String) As %Status
{
 #dim tSc as %Status = $$$OK
 try {
 set tSettings = ##class(%External.Messaging.KafkaSettings).%New()
 set tSettings.servers = $$$KAFKASERVER
 set tSettings.groupId = "iris-consumer"

Page 4 of 11

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

 set tClient = ##class(%External.Messaging.Client
).CreateKafkaClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 Set tNumberOfPartitions = 1
 Set tReplicationFactor = 1
 Set
 tSC = tClient.CreateTopic(pTopicName,tNumberOfPartitions,tReplicationFactor)
 $$$ThrowOnError(tSC)
 $$$ThrowOnError(tClient.Close())
 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

ClassMethod DeleteTopic(pTopicName As %String) As %Status
{
 #dim tSc as %Status = $$$OK
 try {
 set tSettings = ##class(%External.Messaging.KafkaSettings).%New()
 set tSettings.servers = $$$KAFKASERVER
 set tSettings.groupId = "iris-consumer"
 set tClient = ##class(%External.Messaging.Client
).CreateKafkaClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 Set tNumberOfPartitions = 1
 Set tReplicationFactor = 1
 Set tSC = tClient.DeleteTopic(pTopicName)
 $$$ThrowOnError(tSC)
 $$$ThrowOnError(tClient.Close())
 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

ClassMethod SendMessage(pMessage As %String, pTopic As %String) As %Status
{
 #dim tSettings as %External.Messaging.KafkaSettings
 #dim tClient as %External.Messaging.KafkaClient
 #dim tMessage as %External.Messaging.KafkaMessage
 #dim tSc as %Status = $$$OK
 try {
 set tSettings = ##class(%External.Messaging.KafkaSettings).%New()
 set tSettings.servers = $$$KAFKASERVER
 set tSettings.groupId = "iris-consumer"
 set tMessage = ##class(%External.Messaging.KafkaMessage).%New()
 set tMessage.topic = pTopic
 set tMessage.value = pMessage
 set tClient = ##class(%External.Messaging.Client
).CreateKafkaClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 Set producerSettings =
"{""key.serializer"":""org.apache.kafka.common.serialization.StringSerializer""}"
 $$$ThrowOnError(tClient.UpdateProducerConfig(producerSettings))

Page 5 of 11

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

 $$$ThrowOnError(tClient.SendMessage(tMessage))
 $$$ThrowOnError(tClient.Close())

 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

ClassMethod ReceiveMessage(pTopicName As %String, pGroupId As %String = "iris-
consumer", Output pMessages) As %Status
{
 #dim tSettings as %External.Messaging.KafkaSettings
 #dim tClient as %External.Messaging.KafkaClient
 #dim tMessage as %External.Messaging.KafkaMessage
 #dim tSc as %Status = $$$OK
 try {
 set tSettings = ##class(%External.Messaging.KafkaSettings).%New()
 set tSettings.servers = $$$KAFKASERVER
 set tSettings.groupId = pGroupId

 set tClient = ##class(%External.Messaging.Client
).CreateKafkaClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 Set producerSettings =
"{""key.serializer"":""org.apache.kafka.common.serialization.StringSerializer""}"
 $$$ThrowOnError(tClient.UpdateProducerConfig(producerSettings))
 $$$ThrowOnError(tClient.ReceiveMessage(pTopicName, .pMessages))
 $$$ThrowOnError(tClient.Close())
 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

}

Interacting with AWS SQS

How would you communicate with AWS SQS (Simple Queue Service)?
The basic procedure is pretty similiar. But AWS requires authentication and AWS doesn't use the term topic. They
talk about queues. You can send a message to a queue and consumers can receive messages from one or more
queues.

Similar to my api class above I've created something for AWS SQS.

Class AWS.SQS.api [Abstract]
{

ClassMethod SendMessage(pMessage As %String, pQueue As %String) As %Status

Page 6 of 11

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

{
 #dim tSettings as %External.Messaging.SQSSettings
 #dim tMessage as %External.Messaging.SQSMessage
 #dim tClient as %External.Messaging.SQSClient
 #dim tSc as %Status = $$$OK
 try {
 $$$ThrowOnError(##class(AWS.Utils).GetCredentials(.tCredentials))
 set tSettings = ##class(%External.Messaging.SQSSettings).%New()
 set tSettings.accessKey = tCredentials("aws_access_key_id")
 set tSettings.secretKey = tCredentials("aws_secret_access_key")
 set tSettings.sessionToken = tCredentials("aws_session_token")
 set tSettings.region = "eu-central-1"
 set tMessage = ##class(%External.Messaging.SQSMessage).%New()
 set tMessage.body = pMessage
 set tMessage.queue = pQueue

 set tClient = ##class(%External.Messaging.Client
).CreateSQSClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 $$$ThrowOnError(tClient.SendMessage(tMessage))

 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

ClassMethod ReceiveMessage(pQueueName As %String, Output pMessages) As %Status
{
 #dim tSettings as %External.Messaging.SQSSettings
 #dim tClient as %External.Messaging.SQSClient
 #dim tSc as %Status = $$$OK
 try {
 $$$ThrowOnError(##class(AWS.Utils).GetCredentials(.tCredentials))
 set tSettings = ##class(%External.Messaging.SQSSettings).%New()
 set tSettings.accessKey = tCredentials("aws_access_key_id")
 set tSettings.secretKey = tCredentials("aws_secret_access_key")
 set tSettings.sessionToken = tCredentials("aws_session_token")
 set tSettings.region = "eu-central-1"
 set tClient = ##class(%External.Messaging.Client
).CreateSQSClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 $$$ThrowOnError(tClient.ReceiveMessage(pQueueName, .pMessages))

 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

ClassMethod DeleteMessage(pQueueName As %String, pReceiptHandle As %String) As
%Status
{
 #dim tSettings as %External.Messaging.SQSSettings
 #dim tClient as %External.Messaging.SQSClient

Page 7 of 11

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

 #dim tSc as %Status = $$$OK
 try {
 $$$ThrowOnError(##class(AWS.Utils).GetCredentials(.tCredentials))
 set tSettings = ##class(%External.Messaging.SQSSettings).%New()
 set tSettings.accessKey = tCredentials("aws_access_key_id")
 set tSettings.secretKey = tCredentials("aws_secret_access_key")
 set tSettings.sessionToken = tCredentials("aws_session_token")
 set tSettings.region = "eu-central-1"
 set tClient = ##class(
%External.Messaging.Client).CreateSQSClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)
 $$$ThrowOnError(tClient.DeleteMessage(pQueueName, pReceiptHandle))

 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

ClassMethod CreateQueue(pQueueName As %String) As %Status
{
 #dim tSettings as %External.Messaging.SQSSettings
 #dim tClient as %External.Messaging.SQSClient
 #dim tSQSSettings as %External.Messaging.SQSQueueSettings
 #dim tSc as %Status = $$$OK
 try {
 $$$ThrowOnError(##class(AWS.Utils).GetCredentials(.tCredentials))
 set tSettings = ##class(%External.Messaging.SQSSettings).%New()
 set tSettings.accessKey = tCredentials("aws_access_key_id")
 set tSettings.secretKey = tCredentials("aws_secret_access_key")
 set tSettings.sessionToken = tCredentials("aws_session_token")
 set tSettings.region = "eu-central-1"
 set tClient = ##class(%External.Messaging.Client
).CreateSQSClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)

 set tSQSSettings = ##class(%External.Messaging.SQSQueueSettings).%New()

 $$$ThrowOnError(tClient.CreateQueue(pQueueName,tSQSSettings))

 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

ClassMethod DeleteQueue(pQueueName As %String) As %Status
{
 #dim tSettings as %External.Messaging.SQSSettings
 #dim tClient as %External.Messaging.SQSClient
 #dim tSQSSettings as %External.Messaging.SQSQueueSettings
 #dim tSc as %Status = $$$OK
 try {
 $$$ThrowOnError(##class(AWS.Utils).GetCredentials(.tCredentials))

Page 8 of 11

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

 set tSettings = ##class(%External.Messaging.SQSSettings).%New()
 set tSettings.accessKey = tCredentials("aws_access_key_id")
 set tSettings.secretKey = tCredentials("aws_secret_access_key")
 set tSettings.sessionToken = tCredentials("aws_session_token")
 set tSettings.region = "eu-central-1"
 set tClient = ##class(%External.Messaging.Client
).CreateSQSClient(tSettings.ToJSON(),.tSc)
 $$$ThrowOnError(tSc)

 $$$ThrowOnError(tClient.DeleteQueue(pQueueName))

 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

}

It contains methods for creating and deleting queues and sending and receiving messages to and from a queue.

One of the key points here is how to authenticate. I didn't want to have my credentials in my code. So I created a
little helper method to retrieve the credentials from my local credentials file and return it as subscripted array to use
it in my api methods:

ClassMethod GetCredentials(Output pCredentials) As %Status
{
 #dim tSc as %Status = $$$OK
 set tFilename = "/dur/.aws/credentials"
 try {
 set tCredentialsFile = ##class(%Stream.FileCharacter).%New()
 $$$ThrowOnError(tCredentialsFile.LinkToFile(tFilename))
 // first read the header
 set tBuffer = tCredentialsFile.ReadLine()
 for i=1:1:3 {
 set tBuffer = tCredentialsFile.ReadLine()
 set pCredentials($piece(tBuffer," =",1)) = $tr($piece(tBuffer,"= ",2),
$c(13))
 }
 }
 catch tEx {
 set tSc = tEx.AsStatus()
 }

 return tSc
}

To complete this article, let's create a queue community in the AWS region "eu-central-1" (Frankfurt, Germany).

Page 9 of 11

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

The queue has been successfully created and is visible in the AWS console for my account:

Next, let's send a message to this queue:

The method call returns 1. So the message has been successfully sent.

Finally let's poll the queue from the AWS console:

The message has been successfully delivered to the queue.

Conclusion

The external messaging api in InterSystems IRIS 2022.1 makes it really simple to communicate with event
streaming platforms.
Hope you find this useful.

#API #AWS #Deployment #InterSystems IRIS #InterSystems IRIS for Health

Page 10 of 11

https://community.intersystems.com/tags/api
https://community.intersystems.com/tags/aws
https://community.intersystems.com/tags/deployment
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/intersystems-iris-health

Leveraging the external messaging API in InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

 Source URL:https://community.intersystems.com/post/leveraging-external-messaging-api-intersystems-iris

Page 11 of 11

https://community.intersystems.com/post/leveraging-external-messaging-api-intersystems-iris

