Caution with Mixing OO and SQL
Published on InterSystems Developer Community (https://community.intersystems.com)

Avrticle
Danny Wijnschenk - sul 19,2022 4/ read

Caution with Mixing OO and SQL

Mixing Object syntax with SQL is one of the nice features in Object Script. But in one case, it gave strange results,
so | decided to isolate the case and describe it here.

Let's say you need to write a classmethod that updates a single property on disk. Usually, i would write that using
SQL like this :

ClassMethod ActivateSQL(customerld) as %Status
{
&sgl(Update Test.Customer Set Active=1 Where ID=:customerld)
If SQLCODE'=0 {
Set exception = ##class(%Exception.SQL).CreateFromSQLCODE(SQLCODE, $Get(%msg))
Quit exception.AsStatus()
} Else {
Quit $$$0K
}
}

and call this classmethod wherever i need to in my application.

But if the application code has the instance opened when this classmethod is called, and is doing a %Save
afterwards, it will overwrite the updates that happened in the classmethod :

Set objCust=##class(Test.Customer).%Openld(id)

Do objCust.ActivateSQL(id)

Set objCust.Name = "something"

Set sc = objCust.%Save()

By changing the order of the lines, the problem would be solved, but you should be very carefull with this kind of
mix :

Do ##class(Test.Customer).ActivateSQL(id)

Set objCust=##class(Test.Customer).%Openld(id)

Set objCust.Name = "something"

Set sc = objCust.%Save()

When the classmethod would be written using OO syntax like this :
ClassMethod ActivateOO(customerld) as %Status
{

Set objCust = ##class(Test.Customer).%0Openld(customerld)

Set objCust.Active = 1

Quit objCust.%Save()

}

there would not be a problem since the open instance in the calling code and the opened instance in the
classmethod would point to the same instance in memory.

Page 1 of 3

https://community.intersystems.com/user/danny-wijnschenk

Caution with Mixing OO and SQL
Published on InterSystems Developer Community (https://community.intersystems.com)

(Besides a performance penalty since opening an instance with lots of properties to just update one property is
slower than a SQL update)

So as a conclusion : beware of opening instances 'too long' along your code if you are using also SQL.

| have attached the full test class in case you want to see it for yourself, call Do ##class(Test.Customer).Test(0) to
see the code using only OO, and .Test(1) with using the SQL (and see that the SQL update is overwritten)
Any comments are appreciated !

Cl ass Test. Custoner Extends %Persi stent

{

Property Name As %&tring;

Property Active As %Bool ean;

O assMet hod ActivateSQ.(custonerld) As %status
{

#Di m excepti on

&sql (Updat e Test. Custoner Set Active=1 Wiere | D=: custonerld)

| f SQLCODE' =0 {
Set exception = ##cl ass(%Exception. SQL) . Cr eat eFr onSQLCODE(SQLCODE, $Get (%18Q))
Quit exception. AsSt at us()

}

&sql (Sel ect Nane, Active Into :nane, :active From Test. Custonmer Were |ID
= :custonerld)
Wite !,"Result After SQ. Update : ",!

Wite "Nane ", naneg, !
Wite "Active : ",active,!!
Qui t

}

Cl assMet hod ActivateOQ(custonerld) As %Gt atus
{
#Di m obj Cust as Test. Cust oner
#Di m sc as %&t at us
Set obj Cust = ##cl ass(Test. Customer) . %penl d(cust orer | d)
Set obj Cust. Active =1
Set sc = obj Cust. %Bave()
If sc'=$$$OK Quit sc
&sql (Sel ect Nane, Active Into :nane, :active From Test. Custoner Were |ID
= :custonerld)
Wite !, "Result After %save : ",!

Wite "Name . ", obj Cust. Naneg, !
Wite "Active : ", objCust.Active,!!
Qui t

}

O assMet hod Test (nbde = 0)

{

#Di m obj Cust as Test. Cust omner

#Di m sc as %5t at us

#Dimid as 9% nt eger

;Create an instance and keep the id in nenory
Set obj Cust = ##cl ass(Test. Customer) . %New()
Set obj Cust. Nane = "Danny"

Page 2 of 3

Caution with Mixing OO and SQL
Published on InterSystems Developer Community (https://community.intersystems.com)

Set sc = obj Cust.%Bave() If sc'=1 Wite "Could not save",!
Set id = objCust.%d()
Kill obj Cust

; Open and display the created instance

Set obj Cust =##cl ass(Test. Cust oner) . % penl d(i d)
Wite "Nanme . ", obj Cust. Nane, !

Wite "Active : ",objCust.Active,!

;Call a classnethod that updates the id with SQL or OO

I f nmode=0 {
Do obj Cust. Activat eOQ(i d)
} else {
Do obj Cust. Acti vat eSQL(i d)

}

; Change the instance (that is still in menory)

Set obj Cust = ##cl ass(Test. Custoner). % penl d(i d)

Set obj Cust. Nane = obj Cust. Nanme_" - edited"

Set sc = obj Cust.%Bave() If sc'=1 Wite "Could not save",!

Wite "Name . ", obj Cust. Nane, !

Wite "Active : ", objCust. Active,!

;the sql update in the classnmethod is overwitten with the instance that was still i
n menory

; Open and display the created instance

Kill obj Cust

Set obj Cust = ##cl ass(Test. Custoner) . %Openl d(i d)

Wite "Nanme : ", obj Cust. Nane, !

Wite "Active : ",objCust.Active,!
}
}

#Coding Guidelines #ObjectScript #Caché

Source URL:https://community.intersystems.com/post/caution-mixing-oo-and-sql

Page 3 of 3

https://community.intersystems.com/tags/coding-guidelines
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/caution-mixing-oo-and-sql

