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Caution with Mixing OO and SQL
Mixing Object syntax with SQL is one of the nice features in Object Script. But in one case, it gave strange results,
so I decided to isolate the case and describe it here.

Let's say you need to write a classmethod that updates a single property on disk. Usually, i would write that using
SQL like this :

 
  ClassMethod ActivateSQL(customerId) as %Status
{
  &sql(Update Test.Customer Set Active=1 Where ID=:customerId)
  If SQLCODE'=0 {
  Set exception = ##class(%Exception.SQL).CreateFromSQLCODE(SQLCODE, $Get(%msg))
  Quit exception.AsStatus()
  } Else {
  Quit $$$OK
  }
}
 

and call this classmethod wherever i need to in my application.

 

But if the application code has the instance opened when this classmethod is called, and is doing a %Save
afterwards, it will overwrite the updates that happened in the classmethod :
 Set objCust=##class(Test.Customer).%OpenId(id)
Do objCust.ActivateSQL(id)
Set objCust.Name = "something"
Set sc = objCust.%Save()

By changing the order of the lines, the problem would be solved, but you should be very carefull with this kind of
mix :
Do ##class(Test.Customer).ActivateSQL(id)
Set objCust=##class(Test.Customer).%OpenId(id)
Set objCust.Name = "something"
Set sc = objCust.%Save()

 

When the classmethod would be written using OO syntax like this :
 ClassMethod ActivateOO(customerId) as %Status
{
  Set objCust = ##class(Test.Customer).%OpenId(customerId)
  Set objCust.Active = 1
  Quit objCust.%Save()
}

there would not be a problem since the open instance in the calling code and the opened instance in the
classmethod would point to the same instance in memory.
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(Besides a performance penalty since opening an instance with lots of properties to just update one property is
slower than a SQL update)

So as a conclusion : beware of opening instances 'too long' along your code if you are using also SQL.

I have attached the full test class in case you want to see it for yourself, call Do ##class(Test.Customer).Test(0) to
see the code using only OO, and .Test(1) with using the SQL (and see that the SQL update is overwritten)
Any comments are appreciated !

 

Class Test.Customer Extends %Persistent
{

Property Name As %String;
Property Active As %Boolean;
ClassMethod ActivateSQL(customerId) As %Status
{
 #Dim exception

 &sql(Update Test.Customer Set Active=1 Where ID=:customerId)
 If SQLCODE'=0 {
  Set exception = ##class(%Exception.SQL).CreateFromSQLCODE(SQLCODE, $Get(%msg))
  Quit exception.AsStatus()
 }

 &sql(Select Name, Active Into :name, :active From Test.Customer Where ID
 = :customerId)
 Write !,"Result After SQL Update : ",!
 Write "Name   : ",name,!
 Write "Active : ",active,!!
 Quit
}

ClassMethod ActivateOO(customerId) As %Status
{
 #Dim objCust as Test.Customer
 #Dim sc as %Status
 Set objCust = ##class(Test.Customer).%OpenId(customerId)
 Set objCust.Active = 1
 Set sc = objCust.%Save()
 If sc'=$$$OK Quit sc
 &sql(Select Name, Active Into :name, :active From Test.Customer Where ID
 = :customerId)
 Write !,"Result After %Save : ",!
 Write "Name   : ",objCust.Name,!
 Write "Active : ",objCust.Active,!! 
 Quit
}

ClassMethod Test(mode = 0)
{
 #Dim objCust as Test.Customer
 #Dim sc as %Status
 #Dim id as %Integer
 ;Create an instance and keep the id in memory
 Set objCust = ##class(Test.Customer).%New()
 Set objCust.Name = "Danny"
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 Set sc = objCust.%Save() If sc'=1 Write "Could not save",!
 Set id = objCust.%Id()
 Kill objCust

 ;Open and display the created instance
 Set objCust=##class(Test.Customer).%OpenId(id)
 Write "Name   : ",objCust.Name,!
 Write "Active : ",objCust.Active,! 

 ;Call a classmethod that updates the id with SQL or OO
 If mode=0 {
  Do objCust.ActivateOO(id)
 } else {
  Do objCust.ActivateSQL(id)
 } 
 ;Change the instance (that is still in memory)
 Set objCust = ##class(Test.Customer).%OpenId(id)
 Set objCust.Name = objCust.Name_" - edited"
 Set sc = objCust.%Save() If sc'=1 Write "Could not save",!
 Write "Name   : ",objCust.Name,!
 Write "Active : ",objCust.Active,!
 ;the sql update in the classmethod is overwritten with the instance that was still i
n memory
 ;Open and display the created instance
 Kill objCust
 Set objCust = ##class(Test.Customer).%OpenId(id)
 Write "Name   : ",objCust.Name,!
 Write "Active : ",objCust.Active,!
}
}

 
#Coding Guidelines #ObjectScript #Caché  
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