
ECP With Docker
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Lorenzo Scalese · Jul 21, 2022 11m read

ECP With Docker
Hi community,

This is the third article in the series about initializing IRIS instances with Docker. This time, we will focus on E
nterprise Cache Protocol (ECP).

In a very simplified way, ECP allows configuring some IRIS instances as application servers and others as data
servers. Detailed technical information can be found in the official documentation.

This article aims to describe:

How to script the initialization of a data server, and how to script the initialization of one or more application
servers.
How to establish an encrypted connection between these nodes with Docker.

To do this, we typically use some of the tools we have already seen in previous web gateway, and mirroring articles
describing such instruments as OpenSSL, envsubst, and Config-API.

Requirements
ECP is not available with the IRIS Community version. Therefore, a World Response Center access is required to
download a container license and to connect to the containers.intersystems.com registry.

Preparing the system
The system must share some local files with the containers. It is necessary to create certain users and groups to
avoid the "access denied" error.

sudo useradd --uid 51773 --user-group irisowner
sudo useradd --uid 52773 --user-group irisuser
sudo groupmod --gid 51773 irisowner
sudo groupmod --gid 52773 irisuser

If you don’t have the license “iris.key” yet, download it from WRC, and add it in your home directory.

Retrieve the sample repository
All the files you need are available on a public repository except the license “iris.key”, so start by cloning it:

git clone https://github.com/lscalese/ecp-with-docker.git
cd ecp-with-docker

Page 1 of 8

https://community.intersystems.com/user/lorenzo-scalese

ECP With Docker
Published on InterSystems Developer Community (https://community.intersystems.com)

SSL Certificates
In order to encrypt communications between the application servers and the data server, we need SSL certificates.
A ready-to-use script ("gen-certificates.sh") is available. However, feel free to modify it so that the certificate
settings are consistent with your location, company, etc.

Execute:

sh ./gen-certificates.sh

The generated certificates are now in the "./certificates" directory.
File Container Description
./certificates/CA_Server.cer Application server and data server Authority server certificate
./certificates/app_server.cer Application server Certificate for IRIS application server

instance
./certificates/app_server.key Application server Related private key
./certificates/data_server.cer Data server Certificate for IRIS data server

instance
./certificates/data_server.key Data server Related private key

Build the image
First of all, log in to the Intersystems docker registry. The base image will be downloaded from the registry during
the build:

docker login -u="YourWRCLogin" -p="YourICRToken" containers.intersystems.com

If you don't know your token, log on to https://containers.intersystems.com/ with your WRC account.

During this build, we will add some software utilities to the IRIS base image:

gettext-base: it will allow us to substitute environment variables in our configuration files with the "envsubst"
command.
iputils-arping: it is required in case we want to mirror the data server.
ZPM: ObjectScript package manager.

Dockerfile:

ARG IMAGE=containers.intersystems.com/intersystems/iris:2022.2.0.281.0

Don't need to download the image from WRC. It will be pulled from ICR at build time
.

FROM $IMAGE

USER root

Install iputils-
arping to have an arping command. It's required to configure Virtual IP.
Download the latest ZPM version (ZPM is included only with community edition).
RUN apt-get update && apt-get install iputils-arping gettext-base && \
 rm -rf /var/lib/apt/lists/*

Page 2 of 8

https://containers.intersystems.com/
https://github.com/lscalese/ecp-with-docker/blob/master/Dockerfile

ECP With Docker
Published on InterSystems Developer Community (https://community.intersystems.com)

USER ${ISC_PACKAGE_MGRUSER}

WORKDIR /home/irisowner/demo

RUN --mount=type=bind,src=.,dst=. \
 iris start IRIS && \
 iris session IRIS < iris.script && \
 iris stop IRIS quietly

There is nothing special in this Dockerfile, except the last line. It configures the IRIS data server instance to accept
up to 3 application servers. Beware, this configuration requires a restart of IRIS. We assign the value of this
parameter during the build to avoid having to script a restart later.

Start the build:

docker-compose build –no-cache

The configuration files
For the configuration of the IRIS instances (application servers and data server) we use JSON config-api file
format. You will notice that these files contain environment variables "${variable_name}". Their values are defined
in the "environment" sections of the “docker-compose.yml” file that we will see later in this document. These
variables will be substituted just before loading the files using the "envsubst" utility.

Data server

For the data server, we will:

Enable the ECP service and define the list of authorized clients (application servers).
Create the "SSL %ECPServer" configuration necessary for encrypting communications.
Create a database "myappdata". This will be used as a remote database from the application servers.

(data-serer.json)[https://github.com/lscalese/ecp-with-docker/blob/master/config-files/dat...

{
 "Security.Services" : {
 "%Service_ECP" : {
 "Enabled" : true,
 "ClientSystems":"${CLIENT_SYSTEMS}",
 "AutheEnabled":"1024"
 }
 },
 "Security.SSLConfigs": {
 "%ECPServer": {
 "CAFile": "${CA_ROOT}",
 "CertificateFile": "${CA_SERVER}",
 "Name": "%ECPServer",
 "PrivateKeyFile": "${CA_PRIVATE_KEY}",
 "Type": "1",
 "VerifyPeer": 3
 }
 },
 "Security.System": {

Page 3 of 8

https://github.com/lscalese/ecp-with-docker/blob/master/config-files/data-server.json%5D

ECP With Docker
Published on InterSystems Developer Community (https://community.intersystems.com)

 "SSLECPServer":1
 },
 "SYS.Databases":{
 "/usr/irissys/mgr/myappdata/" : {}
 },
 "Databases":{
 "myappdata" : {
 "Directory" : "/usr/irissys/mgr/myappdata/"
 }
 }
}

This configuration file is loaded at the start of the data server container by the "init_datasrv.sh" script. All application
servers that are connected to the data server must be trusted. This script will automatically validate all connections
within 100 seconds to limit manual actions in the administration portal. Of course, this can be improved to enhance
security.

Application server

For the application servers, we will:

Enable the ECP service.
Create the SSL configuration "%ECPClient" required for communication encryption.
Configure the connection information to the data server.
Create the configuration of the remote database "myappdata".
Create a global mapping "demo.*" in the "USER" namespace to the "myappdata" database. This will allow
us to test the operation of ECP later.

app-server.json:

{
 "Security.Services" : {
 "%Service_ECP" : {
 "Enabled" : true
 }
 },
 "Security.SSLConfigs": {
 "%ECPClient": {
 "CAFile": "${CA_ROOT}",
 "CertificateFile": "${CA_CLIENT}",
 "Name": "%ECPClient",
 "PrivateKeyFile": "${CA_PRIVATE_KEY}",
 "Type": "0"
 }
 },
 "ECPServers" : {
 "${DATASERVER_NAME}" : {
 "Name" : "${DATASERVER_NAME}",
 "Address" : "${DATASERVER_IP}",
 "Port" : "${DATASERVER_PORT}",
 "SSLConfig" : "1"
 }
 },
 "Databases": {
 "myappdata" : {

Page 4 of 8

https://github.com/lscalese/ecp-with-docker/blob/master/config-files/app-server.json

ECP With Docker
Published on InterSystems Developer Community (https://community.intersystems.com)

 "Directory" : "/usr/irissys/mgr/myappdata/",
 "Name" : "${REMOTE_DB_NAME}",
 "Server" : "${DATASERVER_NAME}"
 }
 },
 "MapGlobals":{
 "USER": [{
 "Name" : "demo.*",
 "Database" : "myappdata"
 }]
 }
}

The configuration file is loaded at the start of an application server container by the script "init_appsrv.sh ".

Starting the containers
Now, we can start the containers:

2 application servers.
1 data server.

To do this, run:

docker-compose up ‒scale ecp-demo-app-server=2

See the docker-compose file for details:

Variables are defined in .env file
to show the resolved docker-compose file, execute
docker-compose config

version: '3.7'

services:
 ecp-demo-data-server:
 build: .
 image: ecp-demo
 container_name: ecp-demo-data-server
 hostname: data-server
 networks:
 app_net:
 environment:
 # List of allowed ECP clients (application server).
 - CLIENT_SYSTEMS=ecp-with-docker_ecp-demo-app-server_1;ecp-with-docker_ecp-demo-
app-server_2;ecp-with-docker_ecp-demo-app-server_3
 # Path authority server certificate
 - CA_ROOT=/certificates/CA_Server.cer
 # Path to data server certificate
 - CA_SERVER=/certificates/data_server.cer
 # Path to private key of the data server certificate
 - CA_PRIVATE_KEY=/certificates/data_server.key
 # Path to Config-API file to initiliaze this IRIS instance
 - IRIS_CONFIGAPI_FILE=/home/irisowner/demo/data-server.json
 ports:

Page 5 of 8

https://github.com/lscalese/ecp-with-docker/blob/master/init_appsrv.sh
https://github.com/lscalese/ecp-with-docker/blob/master/docker-compose.yml

ECP With Docker
Published on InterSystems Developer Community (https://community.intersystems.com)

 - "81:52773"
 volumes:
 # Post start script - data server initilization.
 - ./init_datasrv.sh:/home/irisowner/demo/init_datasrv.sh
 # Mount certificates (see gen-certificates.sh to generate certificates)
 - ./certificates/app_server.cer:/certificates/data_server.cer
 - ./certificates/app_server.key:/certificates/data_server.key
 - ./certificates/CA_Server.cer:/certificates/CA_Server.cer
 # Mount config file
 - ./config-files/data-server.json:/home/irisowner/demo/data-server.json
 # IRIS License
 - ~/iris.key:/usr/irissys/mgr/iris.key
 command: -a /home/irisowner/demo/init_datasrv.sh

 ecp-demo-app-server:
 image: ecp-demo
 networks:
 app_net:
 environment:
 # Hostname or IP of the data server.
 - DATASERVER_IP=data-server
 - DATASERVER_NAME=data-server
 - DATASERVER_PORT=1972
 # Path authority server certificate
 - CA_ROOT=/certificates/CA_Server.cer
 - CA_CLIENT=/certificates/app_server.cer
 - CA_PRIVATE_KEY=/certificates/app_server.key
 - IRIS_CONFIGAPI_FILE=/home/irisowner/demo/app-server.json
 ports:
 - 52773
 volumes:
 # Post start script - application server initilization.
 - ./init_appsrv.sh:/home/irisowner/demo/init_appsrv.sh
 # Mount certificates
 - ./certificates/CA_Server.cer:/certificates/CA_Server.cer
 # Path to private key of the data server certificate
 - ./certificates/app_server.cer:/certificates/app_server.cer
 # Path to private key of the data server certificate
 - ./certificates/app_server.key:/certificates/app_server.key
 # Path to Config-API file to initiliaze this IRIS instance
 - ./config-files/app-server.json:/home/irisowner/demo/app-server.json
 # IRIS License
 - ~/iris.key:/usr/irissys/mgr/iris.key
 command: -a /home/irisowner/demo/init_appsrv.sh
 networks:
 app_net:
 ipam:
 driver: default
 config:
 # APP_NET_SUBNET variable is defined in .env file
 - subnet: "${APP_NET_SUBNET}"

Let's test it!

Access to the data server administration portal

The containers have been started. Let's check the status from the data server.

Page 6 of 8

ECP With Docker
Published on InterSystems Developer Community (https://community.intersystems.com)

Port 52773 is mapped to local port 81, so you can access it with this address
http://localhost:81/csp/sys/utilhome.csp

Log in with the default login\password, and then go to System -> Configuration -> ECP Params. Click on "ECP
Application Servers". If everything works fine, you should see 2 application servers with the status "Normal". The
structure of the client name is "data server name":"application server hostname":"IRIS instance name". In our case,
we have not set the application server hostnames, so we have auto-generated hostnames.

Accessing the application server administration portal

To connect to the application servers’ administration portal, firstly, you need to get the port number. Since we used
the "--scale" option, we could not set the ports in the docker-compose file. So you have to retrieve them with the
command docker ps:

docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
 PORTS
 NAMES
a1844f38939f ecp-demo "/tini -- /iris-main…" 25 minutes ago Up 25 minutes (un
healthy) 1972/tcp, 2188/tcp, 53773/tcp, 54773/tcp, 0.0.0.0:81->52773/tcp, :::81->52
773/tcp ecp-demo-data-server
4fa9623be1f8 ecp-demo "/tini -- /iris-main…" 25 minutes ago Up 25 minutes (un
healthy) 1972/tcp, 2188/tcp, 53773/tcp, 54773/tcp, 0.0.0.0:49170->52773/tcp, :::491
70->52773/tcp ecp-with-docker_ecp-demo-app-server_1
ecff03aa62b6 ecp-demo "/tini -- /iris-main…" 25 minutes ago Up 25 minutes (un
healthy) 1972/tcp, 2188/tcp, 53773/tcp, 54773/tcp, 0.0.0.0:49169->52773/tcp, :::491
69->52773/tcp ecp-with-docker_ecp-demo-app-server_2

In this example, the ports are:

49170 for the first application server http://localhost:49170/csp/sys/utilhome.csp
49169 for the second application server http://localhost:49169/csp/sys/utilhome.csp

Page 7 of 8

http://localhost:81/csp/sys/utilhome.csp
http://localhost:49170/csp/sys/utilhome.csp
http://localhost:49169/csp/sys/utilhome.csp

ECP With Docker
Published on InterSystems Developer Community (https://community.intersystems.com)

Read/write test on the remote database

Let's perform some read/write tests in the terminal.
Open an IRIS terminal on the first application server:

docker exec -it ecp-with-docker_ecp-demo-app-server_1 iris session iris
Set ^demo.ecp=$zdt($h,3,1) _ “ write from the first application server.”

Now open a terminal on the second application server:

docker exec -it ecp-with-docker_ecp-demo-app-server_2 iris session iris
Set ^demo.ecp(2)=$zdt($h,3,1) _ " write from the second application server."
zwrite ^demo.ecp

You should see the responses from both servers:

^demo.ecp(1)="2022-07-05 23:05:10 write from the first application server."
^demo.ecp(2)="2022-07-05 23:07:44 write from the second application server."

Finally, open an IRIS terminal on the data server and perform a read of the global demo.ecp:

docker exec -it ecp-demo-data-server iris session iris
zwrite ^["^^/usr/irissys/mgr/myappdata/"]demo.ecp

^["^^/usr/irissys/mgr/myappdata/"]demo.ecp(1)="2022-07-05 23:05:10 write from the fir
st application server."
^["^^/usr/irissys/mgr/myappdata/"]demo.ecp(2)="2022-07-05 23:07:44 write from the sec
ond application server."

That's all for today. I hope you have enjoyed this article. Do not hesitate to leave your comments.

#Deployment #DevOps #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/ecp-docker

Page 8 of 8

https://community.intersystems.com/tags/deployment
https://community.intersystems.com/tags/devops
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/ecp-docker

