
Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Robert Cemper · Jun 20, 2022 7m read

Working with Globals in Embedded Python
My major interest is Working with Globals in Embedded Python.
So I checked the available official documentation.

#1 Introduction to Globals
an attempt of a generic description of what a global is. Pointing to

#2 A Closer Look at ObjectScript
But where is Embedded Python ?
Way down you see

#3 Embedded Python
3.1 Embedded Python Overview
3.1.1 Work with Globals
Great if you have never seen a Global before
Otherwise a shocking primitive example
3.2 Using Embedded Python
Last hope: >>> but there is just NOTHING visible.

This is more than just disappointing! Even IRIS Native API for Python is more detailed.
To be clear about what I expect:

SET, GET, KILL of a Global node
Native API: Fundamental Node Operations and

Navigation with $DATA(), $ORDER(), $QUERY()
Native API: Iteration with nextSubscript() and isDefined()
So I had to investigate, reverse engineer it and experiment myself.

And these are my findings:
All examples are shown in Python Shell as found in IRIS for Windows (x86-64) 2022.1 (Build 209U)
making intensive use of the implicit print() function.

The Global
Whatever you plan to do you need to start with the class iris.gref to create a reference object for the Global.
The Global name is passed as string directly or as variable similar to Indirection in COS/ISOS.
The initial caret (^) is not required as it is clear that we just deal with Globals !

 >>> globalname='rcc'

Page 1 of 7

https://community.intersystems.com/user/robert-cemper-0
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=GORIENT_ch_intro#GORIENT_intro_globals
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=GORIENT_ch_cos
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=AFL_epython
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=AFL_epython#AFL_epython_irisapi_gref
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=AEPYTHON
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=BPYNAT_globals#BPYNAT_globals_nodes
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=BPYNAT_globals#BPYNAT_globals_orderdata

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

 >>> nglob=iris.gref(globalname)
 >>> glob=iris.gref('rcc')
 >>> cglob=iris.gref('^rcc')

These are 3 Global references to the same Global.
Just a reference but no indication of this global exists
Interactive doc: print(glob.__doc__)
InterSystems IRIS global reference object.
Use the iris.gref() method to obtain a reference to a global

SUBSCRIPTS

Any global subscript is passed as a Py list [sub1,sub2]. No big difference to COS/ISOS
Just the top-level needs special treatment.
To signal No Subscript it is not an empty list but this [None]

SET

To set a Global we may do it 'directly' as we would in COS/ISOS.

 >>> glob[1,1]=11

or use method gref.set()

 >>> glob.set([1,3],13)

Interactive doc: print(glob.set.__doc__)
Given the keys of a global, sets the value stored at that key of the global.
Example: g.set([i,j], 10) sets the value of the node at key i,j of global g to 10

To access the content of a Global node we may do it 'directly' as we would in COS/ISOS.

 >>> glob[1,3]
 13

or use method gref.get()

 >>> glob.get([1,1])
 11

Interactive doc: print(glob.get.__doc__)
Given the keys of a global, returns the value stored at that node of the global.
Example: x = g.get([i,j]) sets x to the value stored at key i,j of global g.

Attention: This is NOT $GET() as you may know from COS/ISOS

 >>> glob.get([1,99])
 Traceback (most recent call last):
 File "<input>", line 1, in <module>
 KeyError: 'Global Undefined'
 >>>

But using it directly it acts as $GET() in COS/ISOS

Page 2 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

 >>> x=glob[1,99]
 >>> print(x)
 None
 >>>

This None signals what SQL expresses as NULL. It will show up later again.

KILL

There is only the method gref.kill() to achieve the expected result.

 >>> glob.kill([1,3])
 >>> y=glob[1,3]
 >>> print(y)
 None
 >>>

Interactive doc: print(glob.kill.__doc__)
Given the keys of a global, kills that node of the global and its subtree.
Example: g.kill([i,j]) kills the node stored at key i,j of global g and any descendants.

$DATA()

The related method is gref.data()
Interactive doc: print(glob.data.__doc__)
Given the keys of a global, returns the state of that.
Example: x = g.data([i,j]) sets x to 0,1,10,11
 0-if undefined, 1-defined, 10-undefined but has descendants, 11-has value and descendants

It works as expected.

 >>> glob.data()
 10
 >>> glob.data([None])
 10
 >>> glob[None]=9
 >>> glob.data([None])
 11
 >>> glob.data([1,1])
 1
 >>> glob.data([1,3])
 0
 >>>

$ORDER()

For this example I have added a few nodes to the Global ^rcc:

 >zw ^rcc
 ^rcc=9
 ^rcc(1,1)=11
 ^rcc(1,2)=12

Page 3 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

 ^rcc(2,3,4)=234
 ^rcc(2,3,5)=235
 ^rcc(2,4,4)=244
 ^rcc(7)=7

The related method is gref.order()
Interactive doc: print(glob.order.__doc__)
Given the keys of a global, returns the next key of the global.
Example: j = g.order([i,j]) sets j to the next second-level key of global g.

So we see:

 >>> print(glob.order([]))
 1
 >>> print(glob.order([1]))
 2
 >>> print(glob.order([2]))
 7
 >>> print(glob.order([7]))
 None
 >>> print(glob.order([1,'']))
 1
 >>> print(glob.order([1,1]))
 2
 >>> print(glob.order([2,3,]))
 4
 >>> print(glob.order([2,3,""]))
 4
 >>> print(glob.order([2,3,4]))
 5
 >>> print(glob.order([2,4,4]))
 None
 >>>

Here a missing subscript as reference or an empty string are equivalent.

$QUERY()

The related method is gref.query()
Interactive doc: print(glob.query.__doc__)
Traverses a global starting at the specified key, returning each key and value as a tuple.
Example: for (key, value) in g.query([i,j]) traverses g from key i,j, returning each key and value in turn

The behavior of this method differs from COS/ISOS.

It returns ALL nodes after the starting node
It includes the stored content
It returns also virtual nodes with NO content indicated as None. Our small example looks like this (wrapped
for readability):

 >>> print(list(glob.query()))
 [(['1'], None), (['1', '1'], 11), (['1', '2'], 12), (['2'], None),
 (['2', '3'], None), (['2', '3', '4'], 234), (['2', '3', '5'], 235),
 (['2', '4'], None), (['2', '4', '4'], 244), (['7'], 7)]
 >>>

Page 4 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

or more readable:

 >>> for (key, value) in glob.query():
 ... print(key,''.ljust(20-len(str(list(key))),'>'),value)
 ...
 ['1'] >>>>>>>>>>>>>>> None
 ['1', '1'] >>>>>>>>>> 11
 ['1', '2'] >>>>>>>>>> 12
 ['2'] >>>>>>>>>>>>>>> None
 ['2', '3'] >>>>>>>>>> None
 ['2', '3', '4'] >>>>> 234
 ['2', '3', '5'] >>>>> 235
 ['2', '4'] >>>>>>>>>> None
 ['2', '4', '4'] >>>>> 244
 ['7'] >>>>>>>>>>>>>>> 7
 >>>

It is definitely not ZWRITE !

Another option is to get the subscripts only using gref.keys()
Interactive doc: print(glob.keys.__doc__)
Traverses a global starting at the specified key, returning each key in the global.
Example: for key in g.keys([i, j]) traverses g from key i,j, returning each key in turn. >>>

 >>> list(glob.keys())
 [['1'], ['1', '1'], ['1', '2'], ['2'], ['2', '3'], ['2', '3', '4'],
 ['2', '3', '5'], ['2', '4'], ['2', '4', '4'], ['7']]
 >>>

And then I found gref.orderiter() with this
Interactive doc: print(glob.orderiter.__doc__)
Traverses a global starting at the specified key, returning the next key and value as a tuple.
Example: for (key, value) in g.orderiter([i,j]) traverses g from key i,j, returning the next key and value.

It acts like $ORDER() also fetching the content and
providing the next sub-node down with it'S content like $QUERY()
see it:

 >>> list(glob.orderiter([]))
 [(['1'], None), (['1', '1'], 11)]
 >>> list(glob.orderiter([1]))
 [(['2'], None), (['2', '3'], None), (['2', '3', '4'], 234)]
 >>> list(glob.orderiter([2]))
 [(['7'], 7)]
 >>>

Finally, there is a method gref.getAsBytes()
Interactive doc: print(glob.getAsBytes.__doc__)
Given the keys of a global, returns a string stored at that node of the global, as bytes.
Example: x = g.getAsBytes([i,j]) sets x to the value stored at key i,j of global g, as bytes.

It fails for numeric values. But likes strings:

 >>> glob[5]="robert"
 >>> glob.get([5])

Page 5 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

 'robert'
 >>> glob.getAsBytes([5])
 b'robert'

And if I run in COS/ISOS: set ^rcc(9)=$lB(99,"robert")
I can get this:

 >>> glob[9]
 '\x03\x04c\x08\x01robert'
 >>> glob.getAsBytes([9])
 b'\x03\x04c\x08\x01robert'
 >>>

How did I detect all these methods:

 >>> for meth in glob.__dir__():
 ... meth
 ...
 '__len__'
 '__getitem__'
 '__setitem__'
 '__delitem__'
 '__new__'
 'data'
 'get'
 'set'
 'kill'
 'getAsBytes'
 'order'
 'query'
 'orderiter'
 'keys'
 '__doc__'
 '__repr__'
 '__hash__'
 '__str__'
 '__getattribute__'
 '__setattr__'
 '__delattr__'
 '__lt__'
 '__le__'
 '__eq__'
 '__ne__'
 '__gt__'
 '__ge__'
 '__init__'
 '__reduce_ex__'
 '__reduce__'
 '__subclasshook__'
 '__init_subclass__'
 '__format__'
 '__sizeof__'
 '__dir__'
 '__class__'
 >>>

Page 6 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

I hope this makes life easier if you require direct access to Globals from Embedded Python
My personal learning: There is mostly a documentation somewhere.
You just have to dig and explore it.

Video Demo

Traduction française

#Embedded Python #Globals #Python #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/working-globals-embedded-python

Page 7 of 7

https://youtu.be/Eq_-KXvmhjU
https://fr.community.intersystems.com/post/travailler-avec-les-globales-dans-embedded-python
https://community.intersystems.com/tags/embedded-python
https://community.intersystems.com/tags/globals
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/working-globals-embedded-python

