Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Robert Cemper - Jun 20,2022 7 read

Working with Globals in Embedded Python

My major interest is Working with Globals in Embedded Python.
So | checked the available official documentation.

#1 Introduction to Globals
an attempt of a generic description of what a global is. Pointing to

#2 A Closer Look at ObjectScript
But where is Embedded Python ?
Way down you see

#3 Embedded Python

3.1 Embedded Python Overview

3.1.1 Work with Globals

Great if you have never seen a Global before
Otherwise a shocking primitive example

3.2 Using Embedded Python

Last hope: >>> but there is just NOTHING visible.

This is more than just disappointing! Even IRIS Native API for Python is more detailed.
To be clear about what | expect:

SET, GET, KILL of a Global node

Native APl: Fundamental Node Operations and

Navigation with $DATA(), $ORDER(), $QUERY ()

Native API: Iteration with nextSubscript() and isDefined()
So | had to investigate, reverse engineer it and experiment myself.

And these are my findings:

All examples are shown in Python Shell as found in IRIS for Windows (x86-64) 2022.1 (Build 209U)
making intensive use of the implicit print() function.

The Global

Whatever you plan to do you need to start with the class iris.gref to create a reference object for the Global.
The Global name is passed as string directly or as variable similar to Indirection in COS/ISOS.
The initial caret () is not required as it is clear that we just deal with Globals !

>>> gl obal name="rcc'

Page 1 of 7

https://community.intersystems.com/user/robert-cemper-0
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=GORIENT_ch_intro#GORIENT_intro_globals
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=GORIENT_ch_cos
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=AFL_epython
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=AFL_epython#AFL_epython_irisapi_gref
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=AEPYTHON
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=BPYNAT_globals#BPYNAT_globals_nodes
https://docs.intersystems.com/iris20221/csp/docbook/DocBook.UI.Page.cls?KEY=BPYNAT_globals#BPYNAT_globals_orderdata

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

>>> ngl ob=iri s. gref (gl obal nane)
>>> glob=iris.gref('rcc')
>>> cglob=iris.gref('~rcc')
These are 3 Global references to the same Global.
Just a reference but no indication of this global exists
Interactive doc: print(glob.doc)
InterSystems IRIS global reference object.
Use the iris.gref() method to obtain a reference to a global
SUBSCRIPTS
Any global subscript is passed as a Py list [sub1,sub2]. No big difference to COS/ISOS

Just the top-level needs special treatment.
To signal No Subscript it is not an empty list but this [None]

SET

To set a Global we may do it 'directly’ as we would in COS/ISOS.

>>> gl ob[1, 1] =11

or use method gref.set()

>>> gl ob.set ([1, 3], 13)
Interactive doc: print(glob.set.doc)
Given the keys of a global, sets the value stored at that key of the global.
Example: g.set([i,j], 10) sets the value of the node at key i,j of global g to 10
To access the content of a Global node we may do it 'directly’ as we would in COS/ISOS.
>>> gl ob[1, 3]
13
or use method gref.get()
>>> gl ob. get ([1, 1])
11
Interactive doc: print(glob.get.doc)
Given the keys of a global, returns the value stored at that node of the global.

Example: x = g.get([i,j]) sets x to the value stored at key i,j of global g.

Attention: This is NOT $GET() as you may know from COS/ISOS

>>> gl ob. get ([1, 99])

Traceback (nost recent call |ast):
File "<input>", line 1, in <nodul e>
KeyError: 'd obal Undefined'

>>>

But using it directly it acts as $GET() in COS/ISOS

Page 2 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

>>> x=gl ob[1, 99]
>>> print(x)
None

>>>

This None signals what SQL expresses as NULL. It will show up later again.

KILL

There is only the method gref.kill() to achieve the expected result.

>>> glob. kill([1,3])
>>> y=gl ob[1, 3]

>>> print(y)

None

>>>

Interactive doc: print(glob.kill.doc)
Given the keys of a global, kills that node of the global and its subtree.
Example: g.kill([i,j]) kills the node stored at key i,j of global g and any descendants.

$DATA()

The related method is gref.data()
Interactive doc: print(glob.data.doc)
Given the keys of a global, returns the state of that.
Example: x = g.data([i,j]) sets x to 0,1,10,11
0-if undefined, 1-defined, 10-undefined but has descendants, 11-has value and descendants

It works as expected.

>>> gl ob. dat a()

10

>>> gl ob. dat a([None])
10

>>> gl ob[None] =9

>>> gl ob. dat a([None])
11

>>> gl ob.data([1, 1])
1

>>> gl ob. data([1, 3])
0

>>>

$ORDER()

For this example | have added a few nodes to the Global ~rcc:

>ZwW "rcc
Arce=9
Arce(l,1)=11
Arce(l, 2)=12

Page 3 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

Arce(2,3,4)=234
Arcce(2,3,5)=235
Arcce(2,4,4)=244
Aree(7)=7

The related method is gref.order()

Interactive doc: print(glob.order.doc)

Given the keys of a global, returns the next key of the global.

Example: j = g.order([i,j]) sets j to the next second-level key of global g.

So we see:

>>> print(glob.order([]))

1

>>> print(glob.order([1]))

2

>>> print(glob.order([2]))

-

>>> print(glob.order([7]))
None

>>> print(glob.order([1,'"]))
1

>>> pr
2

>>> pr
4

>>> pr
4

>>> pr
5

>>> print(glob.order([2,4,4]))
None

>>>

nt (gl ob.order([1,1]))

nt (gl ob.order([2,3,]))

nt (gl ob.order([2,3,""]))

nt (gl ob.order([2,3,4]))

Here a missing subscript as reference or an empty string are equivalent.

$QUERY()

The related method is gref.query()

Interactive doc: print(glob.query.doc)

Traverses a global starting at the specified key, returning each key and value as a tuple.

Example: for (key, value) in g.query([i,j]) traverses g from key i,j, returning each key and value in turn

The behavior of this method differs from COS/ISOS.

¢ |t returns ALL nodes after the starting node
¢ |t includes the stored content

* |t returns also virtual nodes with NO content indicated as None. Our small example looks like this (wrapped

for readability):

>>> print(list(glob.query()))

[((["1"], None), (["1", "1'], 11), (['1", "2'], 12)
([*2', "3], None), (['2', "3, "4"], 234),
(['2', "4"], None), (['2', "4', "4"]

>>>

Page 4 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

or more readable:

>>> for (key, value) in glob.query():
print(key,'"'.ljust(20-len(str(list(key))),"'>"),value)

'] >>>>>>>>>>>>>>> None
1] >>>>>>>>>> 11

, 2] >e>>>>>>>> 12

"] >>>>>>>>>>>>>>> None
', '3'"] >>>>>>>>>> None
, "3, T4 >>>>> 234
, '3, '5'] >>>>> 235
, "4'] >>>>>>>>>> None
, AN AT >>>>> 244
'] >>>>>>5>5>>>>>> 7

Voo
NNNNNNNRERRC

>>

It is definitely not ZWRITE !

Another option is to get the subscripts only using gref.keys()

Interactive doc: print(glob.keys.doc)

Traverses a global starting at the specified key, returning each key in the global.
Example: for key in g.keys([i, j]) traverses g from key i,j, returning each key in turn. >>>

>>> |ist(glob. keys())

R0 P R SR U IO A U0 P -0 P AR D P A AN A D B
[I2I, I3I, I5I], [I2I, I4I], [I2I, I4I, I4I], [I7I]]

>>>

And then | found gref.orderiter() with this
Interactive doc: print(glob.orderiter.doc)
Traverses a global starting at the specified key, returning the next key and value as a tuple.

Example: for (key, value) in g.orderiter([i,j]) traverses g from key i,j, returning the next key and value.

It acts like $ORDER() also fetching the content and
providing the next sub-node down with it'S content like SQUERY ()
see it:

>>> |ist(glob.orderiter([]))

[((["1"], None), (["1", "1'], 11)]

>>> |ist(glob.orderiter([1]))

[(['2'], None), (['2', '"3'], None), (['2", "3, "4'], 234)]
>>> |ist(glob.orderiter([2]))

(71, 0l

>>>

Finally, there is a method gref.getAsBytes()

Interactive doc: print(glob.getAsBytes.doc)

Given the keys of a global, returns a string stored at that node of the global, as bytes.
Example: x = g.getAsBytes([i,j]) sets x to the value stored at key i,j of global g, as bytes.

It fails for numeric values. But likes strings:

>>> gl ob[5] ="robert"
>>> gl ob. get ([5])

Page 5 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

'robert’
>>> gl ob. get AsByt es([5])
b' robert'

And if | run in COS/ISOS: set "rcc(9)=%$IB(99,"robert")
| can get this:

>>> gl ob[9]

"\ x03\ x04c\ x08\ xO1r obert"
>>> gl ob. get AsBytes([9])
b' \ x03\ x04c\ x08\ x01r obert"
>>>

How did | detect all these methods:

>>> for meth in glob. _dir_ ():
nmet h

_len__
'__getitem _
' setitem _
__delitem '
__new_'

' dat a'

' get”

'set’

"kill!

' get AsByt es
" order'
'query'’
"orderiter’
' keys'

' doc__
__repr__
__hash__"
str'

' getattribute
' __setattr__
__delattr__"'
T

' le
__eq__’
__ne_'
t_gt__
‘__ge__
" init
__reduce_ex__
__reduce__'
__subcl asshook__
__init_subclass__
_ format '
__sizeof
Yodir "

' class__
>>>

Page 6 of 7

Working with Globals in Embedded Python
Published on InterSystems Developer Community (https://community.intersystems.com)

I hope this makes life easier if you require direct access to Globals from Embedded Python
My personal learning: There is mostly a documentation somewhere.
You just have to dig and explore it.

Video Demo

Traduction francaise

#Embedded Python #Globals #Python #InterSystems IRIS

Source URL:https://community.intersystems.com/post/working-globals-embedded-python

Page 7 of 7

https://youtu.be/Eq_-KXvmhjU
https://fr.community.intersystems.com/post/travailler-avec-les-globales-dans-embedded-python
https://community.intersystems.com/tags/embedded-python
https://community.intersystems.com/tags/globals
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/working-globals-embedded-python

