
Mastering the %SYSTEM.Encryption class
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Yuri Marx · May 13, 2022 8m read
 Open Exchange

Mastering the %SYSTEM.Encryption class

The InterSystems IRIS has excellent support for encryption, decryption and hashing operations. Inside the class
%SYSTEM.Encryption (https://docs.intersystems.com/iris20212/csp/documatic/%25CSP.Documatic.c...) there are
class methods for the main algorithms on the market.

IRIS Algorithms and Encrypt/Decrypt types
As you can see, the operations are based on keys and include 3 options:

Symmetric Keys: the parts running encrypt and decrypt operations share the same secret key.
Asymmetric Keys: the parts conducting encrypt and decrypt operations share the same secret key for
encryption. However, for decryption, each partner has a private key. This key cannot be shared with other
people, because it is an identity proof.
Hash: used when you do not need to decrypt, but only encrypt.It is a common approach when it comes to
storing user passwords.

Page 1 of 7

https://community.intersystems.com/user/yuri-marx
https://openexchange.intersystems.com/package/cryptography-samples
https://openexchange.intersystems.com/package/cryptography-samples
https://docs.intersystems.com/iris20212/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&PRIVATE=1&CLASSNAME=%25SYSTEM.Encryption

Mastering the %SYSTEM.Encryption class
Published on InterSystems Developer Community (https://community.intersystems.com)

Differences Between Symmetric and Asymmetric Encryption

Symmetric encryption uses a single key that needs to be shared among the people who need to receive the
message while asymmetric encryption uses a pair of public keys and a private key to encrypt and decrypt
messages when communicating.
Symmetric encryption is an old technique while asymmetric encryption is relatively new.
Asymmetric encryption was introduced to complement the inherent problem of the need to share the key in
a symmetric encryption model, eliminating the need to share the key by using a pair of public-private keys.
Asymmetric encryption takes relatively more time than symmetric encryption.

 Key Differences Symmetric Encryption Asymmetric Encryption

Size of cipher text Smaller cipher text than the original
plain text file.

Larger cipher text than the original plain
text file.

Data size Used to transmit big data. Used to transmit small data.

Resources Utilization Symmetric key encryption works on low
usage of resources.

Asymmetric encryption requires high
consumption of resources.

Key Length 128 or 256-bit key size. RSA 2048-bit or higher key size.

Security Less secure due to the usage of a
single key for encryption.

Much safer as two different keys are
involved in encryption and decryption.

Number of keys Symmetric Encryption uses a single
key for encryption and decryption.

Asymmetric Encryption uses two
different keys for encryption and
decryption

Techniques It is an old technique. It is a modern technique.

Confidentiality A single key for encryption and
decryption has chances of the key
being compromised.

Two keys are separately made for
encryption and decryption which
removes the need to share a key.

Speed Symmetric encryption is a fast
technique

Asymmetric encryption is slower in
terms of speed.

Algorithms RC4, AES, DES, 3DES, and QUAD. RSA, Diffie-Hellman, ECC algorithms.

Source: https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences

Using the %SYSTEM.Encryption class to do Encrypt, Decrypt and Hash
To exercise IRIS support to Encrypt, Decrypt and Hash operations, go to https://github.com/yurimarx/cryptography-
samples and follow these steps:

1. Clone/git pull the repo into any local directory

$ git clone https://github.com/yurimarx/cryptography-samples.git

2. Open a Docker terminal in this directory and run:

Page 2 of 7

https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences
https://github.com/yurimarx/cryptography-samples
https://github.com/yurimarx/cryptography-samples

Mastering the %SYSTEM.Encryption class
Published on InterSystems Developer Community (https://community.intersystems.com)

$ docker-compose build

3. Run the IRIS container:

$ docker-compose up -d

4. Open IRIS Terminal:

$ docker-compose exec iris iris session iris -U IRISAPP

IRISAPP>

5. To do RSA Encrypt for asymmetric encryption execute this:

IRISAPP>Set ciphertext = ##class(dc.cryptosamples.Samples).DoRSAEncrypt("InterSystems
")
IRISAPP>Write ciphertext
Ms/eR7pPmE39KBJu75EOYIxpFEd7qqoji61EfahJE1r9mGZX1NYuw5i2cPS5YwE3Aw6vPAeiEKXF
rYW++WtzMeRIRdCMbLG9PrCHD3iQHfZobBnuzx/JMXVc6a4TssbY9gk7qJ5BmlqRTU8zNJiiVmd8
pCFpJgwKzKkNrIgaQn48EgnwblmVkxSFnF2jwXpBt/naNudBguFUBthef2wfULl4uY00aZzHHNxA
bi15mzTdlSJu1vRtCQaEahng9ug7BZ6dyWCHOv74O/L5NEHI+jU+kHQeF2DJneE2yWNESzqhSECa
ZbRjjxNxiRn/HVAKyZdAjkGQVKUkyG8vjnc3Jw==

6. To do RSA Decrypt for asymmetric decryption run this:

IRISAPP>Set plaintext = ##class(dc.cryptosamples.Samples).DoRSADecrypt(ciphertext)
IRISAPP>Write plaintext
InterSystems

7. To do AES CBC Encrypt for symmetric encryption perform this:

IRISAPP>Do ##class(dc.cryptosamples.Samples).DoAESCBCEncrypt("InterSystems")
8sGVUikDZaJF+Z9UljFVAA==

8. To do AES CBC Decrypt for symmetric encryption complete this:

IRISAPP>Do ##class(dc.cryptosamples.Samples).DoAESCBCDecrypt("8sGVUikDZaJF+Z9UljFVAA=
=")
InterSystems

9. To do MD5 hash for an old hash approach conduct this:

IRISAPP>Do ##class(dc.cryptosamples.Samples).DoHash("InterSystems")
rOs6HXfrnbEY5+JBdUJ8hw==

10. To do SHA hash for recommended hash approach follow this:

IRISAPP>Do ##class(dc.cryptosamples.Samples).DoSHAHash("InterSystems")
+X0hDlyoViPlWOm/825KvN3rRKB5cTU5EQTDLvPWM+E=

Page 3 of 7

Mastering the %SYSTEM.Encryption class
Published on InterSystems Developer Community (https://community.intersystems.com)

11. To exit the terminal, do any of the following:

Enter HALT or H (not case-sensitive)

About the source code

1. About the Symmetric key

 # to use with symmetric encrypt/decrypt
ENV SECRETKEY=InterSystemsIRIS

In the Dockerfile, there was created an Environment key to be used as secret key on symmetric operations.

2. About the Asymmetric key

 # to use with asymmetric encrypt/decrypt
RUN openssl req -new -x509 -sha256 -config example-com.conf -newkey rsa:2048 -nodes -keyout
example-com.key.pem -days 365 -out example-com.cert.pem

In the Dockerfile were generated a private key and a public key to be used with asymmetric operations.

3. Symmetric Encrypt

 // Symmetric Keys sample to encrypt
 ClassMethod DoAESCBCEncrypt(plaintext As %String) As %Status
{
 // convert to utf-8
 Set text=$ZCONVERT(plaintext,"O","UTF8")

 // set a secret key
 Set secretkey = $system.Util.GetEnviron("SECRETKEY")
 Set IV = $system.Util.GetEnviron("SECRETKEY")

 // encrypt a text
 Set text = $SYSTEM.Encryption.AESCBCEncrypt(text, secretkey, IV)
 Set ciphertext = $SYSTEM.Encryption.Base64Encode(text)

Page 4 of 7

Mastering the %SYSTEM.Encryption class
Published on InterSystems Developer Community (https://community.intersystems.com)

 Write ciphertext
}

The operation AES CBC Encrypt was used to encrypt texts.
Base64 Encode returns the results as a pretty/readable text to the user.

4. Symmetric Decrypt

 // Symmetric Keys sample to decrypt
 ClassMethod DoAESCBCDecrypt(ciphertext As %String) As %Status
{
 // set a secret key
 Set secretkey = $system.Util.GetEnviron("SECRETKEY")
 Set IV = $system.Util.GetEnviron("SECRETKEY")

 // decrypt a text
 Set text=$SYSTEM.Encryption.Base64Decode(ciphertext)
 Set text=$SYSTEM.Encryption.AESCBCDecrypt(text,secretkey,IV)

 Set plaintext=$ZCONVERT(text,"I","UTF8")
 Write plaintext
}

The operation AES CBC Decrypt was used to decrypt texts.
Base64 Decode returns the encrypted text to a binary one, so it can be used to decrypt.

5. Asymmetric Encrypt
 // Asymmetric Keys sample to encrypt
 ClassMethod DoRSAEncrypt(plaintext As %String) As %Status
{
 // get public certificate
 Set pubKeyFileName = "/opt/irisbuild/example-com.cert.pem"
 Set objCharFile = ##class(%Stream.FileCharacter).%New()
 Set objCharFile.Filename = pubKeyFileName
 Set pubKey = objCharFile.Read()
 // encrypt using RSA
 Set binarytext = $System.Encryption.RSAEncrypt(plaintext, pubKey)
 Set ciphertext = $SYSTEM.Encryption.Base64Encode(binarytext)

 Return ciphertext

Page 5 of 7

Mastering the %SYSTEM.Encryption class
Published on InterSystems Developer Community (https://community.intersystems.com)

}

It is necessary to get the public key file content to encrypt with RSA.
The operation RSA Encrypt was used to encrypt texts.

6. Asymmetric Decrypt

 // Asymmetric Keys sample to decrypt
 ClassMethod DoRSADecrypt(ciphertext As %String) As %Status
{
 // get private key
 Set privKeyFileName = "/opt/irisbuild/example-com.key.pem"
 Set privobjCharFile = ##class(%Stream.FileCharacter).%New()
 Set privobjCharFile.Filename = privKeyFileName
 Set privKey = privobjCharFile.Read()
 // get ciphertext in binary format
 Set text=$SYSTEM.Encryption.Base64Decode(ciphertext)
 // decrypt text using RSA
 Set plaintext = $System.Encryption.RSADecrypt(text, privKey)
 Return plaintext
}

It is necessary to get the private key file content to decrypt with RSA.
The operation RSA Decrypt was used to decrypt texts.

7. Hash text using MD5 (old approach)

 // Hash sample
 ClassMethod DoHash(plaintext As %String) As %Status
{
 // convert to utf-8
 Set text=$ZCONVERT(plaintext,"O","UTF8")

 // hash a text
 Set hashtext = $SYSTEM.Encryption.MD5Hash(text)

 Set base64text = $SYSTEM.Encryption.Base64Encode(hashtext)
 // convert to hex text to following best practices
 Set hextext = ..GetHexText(base64text)
 // return using lowercase

Page 6 of 7

Mastering the %SYSTEM.Encryption class
Published on InterSystems Developer Community (https://community.intersystems.com)

 Write $ZCONVERT(hextext,"L")
}

The operation MD5 Hash will encrypt the text, and it will not be possible to decrypt it.
Hash using MD5 is not recommended for new projects because it is considered insecure. That is why it was
replaced by SHA. The InterSystems IRIS supports SHA (our next example will demonstrate it).

8. Hash text using SHA (recommend approach)

We will use the SHA-3 Hash method for this sample. According to InterSystems documentation, this
method generates a hash using one of the U.S. Secure Hash Algorithms - 3. (See Federal Information
Processing Standards Publication 202 for more information.).
 // Hash using SHA
 ClassMethod DoSHAHash(plaintext As %String) As %Status
{
 // convert to utf-8
 Set text=$ZCONVERT(plaintext,"O","UTF8")

 // hash a text
 Set hashtext = $SYSTEM.Encryption.SHA3Hash(256, text)

 Set base64text = $SYSTEM.Encryption.Base64Encode(hashtext)
 // convert to hex text to following best practices
 Set hextext = ..GetHexText(base64text)
 // return using lowercase
 Write $ZCONVERT(hextext,"L")
}

For the SHA method, it is possible to set the bit length used on a hash operation. The greater the number of bits,
the more difficult it is to crack the hash. However, the hashing process slows down too. In this sample we used 256
bits. You can choose these options for bit length:

224 (SHA-224)
256 (SHA-256)
384 (SHA-384)
512 (SHA-512)

#Best Practices #Security #InterSystems IRIS
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/mastering-systemencryption-class

Page 7 of 7

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/cryptography-samples
https://community.intersystems.com/post/mastering-systemencryption-class

