
Serializing Python objects in globals
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 José Pereira · Apr 5, 2022 4m read
 Open Exchange

Serializing Python objects in globals

Motivation
This project was thought of when I was thinking of how to let Python code deal naturally with the scalable storage
and efficient retrieving mechanism given by IRIS globals, through Embedded Python.

My initial idea was to create a kind of Python dictionary implementation using globals, but soon I realized that I
should deal with object abstraction first.

So, I started creating some Python classes that could wrap Python objects, storing and retrieving their data in
globals, i.e., serializing and deserializing Python objects in IRIS globals.

How does it work?
Like ObjectScript %DispatchGetProperty(), %DispatchSetProperty() and %DispatchMethod(), Python has methods
to delegate object’s properties and methods calls.

When you set or get an object property, the Python interpreter lets you intercept this operation by methods
__setattr__(self, name, value) and __getattr(self, name)__.

Check out this pretty basic example:

>>> class Test:
... def __init(self, prop1):
... self.prop1 = prop1
... def __setattr__(self, name, value):
... print(f"setting property {name} to value {value}")
... def __getattr__(self, name):
... print(f"getting property {name}")
...
>>> obj = Test()
>>> obj.prop1 = "test"
setting property prop1 to value test
>>> obj.prop1
getting property prop1
>>> obj.prop2
getting property prop2
>>> obj.prop2
getting property prop2
>>>

Note that the methods __setattr__() and __getattr()__ were called indirectly by set and get operation on objects of
class Test - which implements those methods. Even a non-declared property, like prop2 in this example, issues
calls to them.

Page 1 of 3

https://community.intersystems.com/user/jos%C3%A9-pereira
https://openexchange.intersystems.com/package/python-globals-serializer-example
https://openexchange.intersystems.com/package/python-globals-serializer-example
https://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?&LIBRARY=%25SYS&CLASSNAME=%25Library.Base

Serializing Python objects in globals
Published on InterSystems Developer Community (https://community.intersystems.com)

That mechanism is the heart of the serialization test that I tried in my project python-globals-serializer-example.
With it, you can intercept set/get operations and store/retrieve data from IRIS globals.

Object model
Globals offer a highly customizable structure. By using their hierarchical model for information access, which is
pretty similar to JSON objects and Python dictionaries, we can store objects’ properties data and metadata.

Here is how I used global to create a simple object model to serialize Python objects:

For each serialized object, its class name is serialized into a node labeled as “class”:

^test(1,"class")="<class 'employee.SalaryEmployee'>"

The first index is an incremental number which is used as reference to this object in the model. So, in the above
example, an object of class employee.SalaryEmployee is stored with the reference value 1.

For properties of primitive data types, their type and value are stored. For instance:

^test(1,"name","type")="<class 'str'>"
^test(1,"name","value")="me"

That structure is interpreted as the object referred to by index 1, has a property called name, with value equals
‘me’.

For properties referencing objects the model is slightly different, because unlike JSON objects or Python
dictionaries, globals are intended to store only primitive data type data. So another “class” node is created to this
referenced object and its node index (i.e. its reference) is stored in the property node:

^test(1,"company","oref")=2
^test(1,"company","type")="<class 'iris_global_object.IrisGlobalObject'>"

^test(2,"class")="<class 'employee.Company'>"
^test(2,"name","type")="<class 'str'>"
^test(2,"name","value")="Company ABC"

Those structures means that the object 1 has a property called company, which its values are stored in the index 2
- note the value for ^test(1,"company","oref").

Serialization/Deserialization process
When you create a wrapper to serialize or deserialize Python objects, you need to define the name of the global
which stores the object.

After that, the serialization process is done when a set operation is executed. The __setattr__() method sets the
property value and type in the global defined to store the object, using the simple object model explained before.

In the opposite direction, a deserialization is done by the __getattr__ method, when a get operation is performed.

Page 2 of 3

https://openexchange.intersystems.com/package/python-globals-serializer-example

Serializing Python objects in globals
Published on InterSystems Developer Community (https://community.intersystems.com)

For primitive data types, this process is straightforward: just get the value stored in the global and returns.

But for objects, the process needs to instantiate their class data type and set all their properties as well, so this way
a restored Python object could be used, including calls to its methods.

Future work
As said in the beginning of this post, this project was born as a simplification of a way to let Python code use global
as a natural storage engine, and aims to be just a proof of concept.

Serializing/deserializing objects is just the beginning of this goal. So, a lot of effort needs to be done to get this idea
mature.

I hope this post lets you understand the purpose of my work in this project, and may inspire you to think in new
ways of how to use IRIS globals to bring Python even closer to IRIS.

#Data Model #Embedded Python #Globals #Python #InterSystems IRIS #Open Exchange
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/serializing-python-objects-globals

Page 3 of 3

https://community.intersystems.com/tags/data-model
https://community.intersystems.com/tags/embedded-python
https://community.intersystems.com/tags/globals
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/tags/open-exchange
https://openexchange.intersystems.com/package/python-globals-serializer-example
https://community.intersystems.com/post/serializing-python-objects-globals

