Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Sergey Lukyanchikov - Feb1,2022 20m read

Agent IRIS*

* In-Platform Agent-Based Simulation of a Connected Factory Cluster

Author: Sergey Lukyanchikov, InterSystems

1. Purpose

In this paper we prototype and explore how multiple agent-based models of robotic factories connected to other
robotic factories (represented by their respective models) can be orchestrated using an all-purpose data platform —
thereby simulating descriptive and predictive properties of a group of factories (a factory cluster). For the underlying
prototype, NetlLogo suite was used to do factory agent-based simulation (re-using “Robotic Factory” model [1])
while InterSystems IRIS data platform was used for NetLogo orchestration and factory/cluster end-to-end
simulation.

The high potential that inter-factory linkages simulation has in integrated production network setting, was
established in numerous academic and applied studies (e.g., Ferdows and Carabetta, 2006 [2]) since long ago. For
research on the effects from various configurations of factory clusters, we would refer the reader to those studies.
In this text, we focus on functional benefits from doing factory cluster simulation using agent-based approach.

The advantages of in-platform implementation of factory cluster simulations have been materialized more recently
due to the evolution of computers and software making feasible parallel computations, near-real-time integration
exchanges and seamless use of a full spectrum of modeling toolsets (e.g., Ng et al., 2011 [3]). Again, for research
on the effects from various in-platform implementations of factory cluster simulation, we would refer reader to
appropriate studies. In this text, we focus on the effects from orchestrating agent-based factory cluster simulation
via an all-embracing universal data platform.

The three NetLogo interconnected robotic factory models participating in the prototype can also run outside of the
data platform environment of InterSystems IRIS — thus preserving prototype’s agent-based simulation functionality
but losing in-platform orchestration controls as well as cluster-level descriptive and predictive analytics.

Figure 1: Three NetLogo interconnected robotic factory models (adaptation of U. Wilensky’s “Robotic Factory”
model [1])

Through this paper, visual material was created at various stages of the prototype development illustrating
implementation progress.

2. Entities, state variables, and scales

In the below table we summarize entities, state variables and scales:

Page 1 of 19

https://community.intersystems.com/user/sergey-lukyanchikov
https://ccl.northwestern.edu/netlogo/
https://www.intersystems.com/products/intersystems-iris/

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

Scale Entity State Variables: InterSystems IRIS State Variables: NetLogo

Production Operation Process Step Model Breed Product Quantity Destination
Factory Cluster Factory Cluster | Orcl i Orcl i Orcl i Orchestration

workspace, channel for workflow, task, implements a

1 a bility a specific activity in

factory cluster with a specific factory cluster a factory cluster

end-to-end application, end-to-end end-to-end

simulation implements a simulation simulation

factory cluster
end-to-end
simulation

Factory Factory Orchestration Orck: Orchestration Agent-based
channel for ‘workflow, task, implements a | simulation
interoperability implements a specific activity in | workspace,
with a specific factory end-to-end | a factory end-to- implements a
application, simulation end simulation factory agent-
implements a based simulation

factory end-to-end
simulation

Factory Operation | Agent User-defined User-defined User-defined User-defined agent

agent class, agent attribute, agent attribute, attribute, implements
a impl a impl a ad ion of
specific agent specific product quantity of specific type in a
type in a factory type in a factory specific type in a factory agent-based
agent-based agent-based factory agent- simulation
simulation simulation based simulation
Global Entity User-defined

global variable,
implements a
quantity of
specific type in a
factory agent-
based simulation

Table 1: Entities, state variables, and scales

2.1 Scales

We distinguish three scales: factory cluster — where interconnected factories are regarded as a single unit, factory —
where a factory is considered a single unit, and factory operation — where factory parts are modeled individually.

Temporal dimension is captured through both hang and wait commands respectively in InterSystems IRIS and
NetLogo. Both allow pacing execution speed to fit virtually any use case: from reproducing actual time scale to
going at accelerated pace (e.g., for simulation as part of a forecasting mechanism, etc.).

Spatial dimension is captured using NetLogo spatial (2D) coordinates in combination with agents implemented as
“patches”. Spatial coordinates (plus “world wrapping” options) allow representing virtually any factory floor layout.

2.2 Entities

Entities operating at cluster and factory scales, coincide with those scales: factory cluster — a set of factories
connected via their inputs/outputs, and factory — a factory servicing its flow of incoming customer orders and
providing its output as input to the other factories.

Factory operation scale is shared by two entities: agents — robots, production machinery, warehouses (loading
docks and storages); and the global entity — a set of all the global variables used in NetLogo models implementing
both reality-mappable and abstract attributes.

2.3 State Variables

Each of the major components of the prototype that we explore, InterSystems IRIS and NetLogo, has its own state
variables. InterSystems IRIS provides the following state variables: production (more), operation (mare), process
(more), and step (mare). Their descriptions can be found in Table 1 above, we will just provide examples of each
variable materialized in InterSystems IRIS:

Page 2 of 19

https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=EGIN_intro
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=EGDV_busop
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=EGDV_BUSPROC
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=EBPL_doc_elements

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

(=l saL x| Business Process Designer X Production Configuration X Queues < Robotic Factory Cluster x|+ - o P

C ® @ localhost:52773/csp/lab/EnsPortal.ProductionConfig.zen?$NAMESPACE=LAB&$NAMESPACE=LAB& 78 &3 7=

é .
InterSystemS“ Management Portal Home About Help Logout m
IRIS Data Platform

Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS

> (> - (isc.py.test.
Production Conf|gurat|0n O Sort: Name Status Number View:
Category:| Al v| Legend Production Settings S
Services + Pr + Operations + SeltingsTQueue Log | Messages | Jobs Actionsl
@ NETLOGO.CLUSTER @ PYTHON
@ NETLOGO.FAGTORYA @ PYTHONA
@ NETLOGO.FACTORYB @ PYTHON B
@ NETLOGO.FACTORYC @ PYTHONC J Production documentation

; Export for deployment
5 Re-Export

deployment package

>
=
5]
5
a
o
=,
=
=
@

Fe | Build a new Production

Open a different
Production

Figure 2: InterSystems IRIS production containing operations and processes

O | saL X Business Process Designer x Production Configuration x| Queues x| Robotic Factory Cluster x|+ = o X

C QA @ localhost:52773/csp/lab/EnsPortal BPLEditor.zen?BP=NETLOGO.CLUSTER bpl 5 e = 8

<&
u Intersystems Management Portal Home About Help Logout
IRIS Data Platform

Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS

Interoperability > Business Process Designer - (NETLOGO.CLUSTER)
[(wew] [Copen | [save][savens] [compie] -Add Activity- v| | -Group ltems- v |)

Business Process |

NETLOGO.CLUSTER 2

Last modified: Today, 02:03:50AM General | Context | Activity | Preferences

General settings for this Business Process
Language
@ ObjectScript () Basic
o
Wi Layout Width Height

. L
<l " from skieam import inear_modiel © Automatic O Manual | 2285 2450
from sklearn.pipeline import Pipeline
Import Packages . Annotation
Optional list of include files

call> aall> <cill> <code> e
Factory A Factory B Factory C Initialize Visualization ‘

? 9 Version number

> O'Is component
<code> If true, include this process in the Component Library
Initialize Cubes

SZ
aabe\
\\Replay‘

Includes

Figure 3: InterSystems IRIS visual process editor with steps in a process workflow

Operations and processes included on isc.py.test.Production production (see Figure 2 above) are all based on ML
Toolkit extensions for InterSystems IRIS, in particular, on community Python Gateway component. One of the
operations — PYTHON - implements cluster-level interoperability with Python (installed on the same computer as
InterSystems IRIS). The other three - PYTHON A/B/C - implement factory-level interoperability with NetLogo via
Python (using Python OS-level process access and management functions).

Process NETLOGO.CLUSTER orchestrates cluster-level end-to-end simulation,

processes NETLOGO.FACTORYA/B/C orchestrate factory-level end-to-end simulations.

The state variables provided by NetLogo are model (more), breed (more), product (mare), quantity (more),
and destination (more). Their descriptions can be found in Table 1 above, we will just provide examples of each
variable materialized in NetLogo:

Page 3 of 19

https://github.com/intersystems-community/PythonGateway
https://ccl.northwestern.edu/netlogo/docs/tutorial1.html
https://ccl.northwestern.edu/netlogo/bind/primitive/breed.html
https://ccl.northwestern.edu/netlogo/bind/primitive/turtles-own.html
https://ccl.northwestern.edu/netlogo/bind/primitive/turtles-own.html
https://ccl.northwestern.edu/netlogo/bind/primitive/turtles-own.html

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

D> Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM)
File Edit Jools Zoom Tabs Help
Interface Info Code

normal speed

4 i + [view update: z
Edit Dte Add [Fac utton_~ | I I mvz; vs I Settings...
ticks: 0
=
setup ® o B Percentage Time Robots Idle N Outstanding Orders —
hes W Ho
New Sheets Iz} P Ws
00 ~ by H
Products Ready for Van g
0 0 0
0 Time 10 0 Time 10
Robots' Energy
[
number-of-robots 5 I
[&
full-charge 1000 energy ‘ %
| l - N §
just-in-time-supply-robot 500 . b
N Pas - ® o
_w-n.nl? 0 Time 600
Off
‘ ‘ \ ‘ ‘. Supply of Machines
550 W Finishers
ot -~ Ecutters
— - = M stitchers
ob [Loading Docks:
u g oadng Do
0
0 Time 10
<
.
< >
Command Center A Clear
5
Z
pbservers(| 152
Figure 4: NetLogo model Ul view set up for a run (adaptation of U. Wilensky’s “Robotic Factory” model [1])
> Robotic Factory A - NetLogo {C:A\Users\slukyanc\eclipse-workspace\DSTI_ABM} - o X
File Edit Tools Zoom Tabs Help
Interface Info Code
Fﬁ cﬁk | [Procedures <] | & indent automatially] Code Tabin separate window
5

[xtensions [csv]

globals [in-list out-list lock-list go-home charge-tick typetodo gtytodo backlog orderse ordersl orders-now cash writeoff coverdocks coverstorages spenddocks cyclel cycle2 meanprod meansupp meandispatch sigmapr

breed [cutters cutter]
breed [stitchers stitcher]

breed [finishers finisher]

breed [storages storage]

breed [robots robot]

breed [robot-rooms robot-room]
breed [loading-docks loading-dock]
breed [orders order]

o turtles-own [

product ; the finished product the turtle has
supply ; the amount of material used to create a product
turtles-present ; the total number of turtles here

]
@ finishers-own

deluxe-level ; whether an order is luxurious or standard, which effects processing time at the finishers.
build-counter ; finishers process orders in different times based on if it is a standard, or a luxurious order,

3 build-counter keeps track of that build time as the finisher processes
queued-supply ; finishers do not instantly process supply, this store the supply that robots bring to a finisher for future processing.
processing-order? ; the finisher can receive luxurious or standard orders, this boolean keeps track of the current order type

@ robots-own

[
energy ; what robots use to drive with
laden? ; whether the robot is carrying anything
destination ; where the robot is current going
idleness ; a counter of time this robot has spend idle
product-type ; keeps track of the order type in a string
1
@ orders-own [
type-of-order ; an order can be standard or luxurious, this keeps track of that for each order created.
|- to setuo : imoorts the base imaee from the folder. sets upb the color of the factorv. adds the processine machines. and robots. N
| < >

Figure 5: NetLogo model code view with implementation of breeds, products, quantities, and destinations
(adaptation of U. Wilensky’s “Robotic Factory” model [1])

Robotic Factory A model (see Figure 5 above) implements agent breeds (e.g., breed [cutters cutter]), products

types (e.g., product-type property of robots), product quantities (e.g., product and supply properties of any agent
breed), and robot destinations (e.g., destination property of robots).

3. Process overview and scheduling

Our prototype was based on the following assumptions, mostly originating from “Robotic Factory” [1] and adapted

Page 4 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

for a factory cluster setting:

* The items stored at warehouses of each factory (loading-docks and storages in terms of our NetLogo
breeds) can only be accounted under supply quantity type. l.e., no production takes place at warehouses
with no finished products expected

* The items stored at robots of each factory (robots) can only be accounted under product quantity type. l.e.,
no production takes place at robots with no production supplies expected

* The items stored at machines of each factory (cutters, stitchers, and finishers) can be accounted under
either supply or product quantity type, depending on whether those items are expected to be written off into
a machine’s production process, or they are expected to be received from a machine’s production process

* Each simulation cycle, for each factory a set of customer orders (agent breed orders) is incremented under
a uniform probability (i.e., on random cycles with a fixed proportion of cycles in which orders are added to
the set) by a randomly growing number of orders. Each order carries a request for one unit of a finished
product (i.e., either one standard product or one deluxe product)

* Each simulation cycle, customer orders are serviced by each factory within the limit of each factory’s
inventory of outgoing items (products) at its stitchers (where assignment of not yet finished items to
customer orders takes place). Each customer order serviced by a factory brings it a unit of cash
(cash global variable) while reducing its inventory of finished products and reducing its pool of outstanding
orders

* What remains unused from a factory cycle’s output becomes a potential dispatch (dispatch global variable)
to other factories in the cluster. If within the same cycle, after servicing customer orders there is still enough
finished product inventory for doing a dispatch to other factories, the dispatch is done (finished products
inventory is reduced, the dispatch quantity is reflected in the .csv file and becomes available for intake at
the other factories in the cluster)

* Factories form their intake of supplies to be used in production processes by buying supplies for cash or by
receiving other factories’ outputs. Intake is done each simulation cycle, its quantity is a sum of cash
available at the factory, and of outputs dispatched by the supplying factories (read more about our cluster
configuration in the next section)

* Routing of the robots among production machines, managing their picking up and dropping off items,
managing their energy levels is done in a fashion like the one implemented in “Robotic Factory” [1] — one
difference being that in our prototype robots can transport more than one unit of items among the machines
(thus allowing the whole prototype to cope with growing numbers of customer orders)

In the below diagram, we see the three InterSystems IRIS processes
(NETLOGO.FACTORYA, NETLOGO.FACTORYB and NETLOGO.FACTORYC) that represent Factories A, B and
C in InterSystems IRIS production, and the three corresponding NetLogo models:

Intersystems Management Portal Home About Help Logout m
IRIS Data Platform

Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance RIS

ity > ion Configuration - (isc.py.test.

Production Conﬂguration t 9] Sort: Name Status Number View:
Category: | All v Legend Production Settings

Services + Pr + Operations +
- @ NETLOGO.FACTORYA ®-___ @ PYTHON A
©® @ NETLOGOFACTORYB ®.. " "“==-._ @ PYTHON B
® @ NETLOGO.FACTORYC ® “~-._ R @ PYTHONC
' ¥ TS Theel

Figure 6: Factory-level components of the prototype (adaptation of U. Wilensky’s “Robotic Factory” model [1])

Page 5 of 19

Agent IRIS*

Published on InterSystems Developer Community (https://community.intersystems.com)

Each InterSystems IRIS process launches a NetLogo experiment using the corresponding NetLogo model — and
performs continuous reading of factory-level experiment dynamics metrics (on each simulation cycle, metrics are
exported by NetLogo models in .csv files with fixed names in a fixed work directory). On top of factory-level

processes, we added a cluster-level InterSystems IRIS process: NETLOGO.CLUSTER. It launches factory-level
processes and performs continuous computation of cluster-level metrics:

InterSystems-

IRIS Data Platform

Management Portal

!

Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc

ility > ion Confi - (isc.py.test.
Production Configuration
Category: All
Services + Processes +

Licensed To Preview_Adv.Server_|AM

Home About Help Logout

Instance IRIS

9]

el Legend

Sort: Name Status Number View:

Production Settings

Operations +

@ /NETLOGO.CLUSTER
@ NETLOGO.FACTORYA
@ NETLOGO.FACTORYB
" @ NETLOGO.FACTORYC

@ PYTHONA
@ PYTHONB
@ PYTHON C

X+ Standard Cuders Clussis

CLUSTERWIDE STANDARD ORDERS:

X + Outpan Pactery A

% + Lux Coders Chunter

CLLISTERWIDE LUX, ORDERS:

2900 2890

 # wstoey Factoey A

x « Hobst Stamina Clustes

a

X gt Pactery A

STERWIDE ROBOT CHARGE LEVEL CLUSTERWIDE ROBOT FLEET:
8 15

% + Rt Utiirasen Factory A

* + Robon Urizason Factoey B

Figure 7: Cluster-level components of the prototype (adaptation of U. Wilensky’s “Robotic Factory” model [1])

Cluster-level and factory-level metric values are persisted in InterSystems IRIS tables, becoming facts for
InterSystems IRIS OLAP cubes that underlie various visualization components, see below the snapshot of a cluster-

level (cockpit) dashboard:

X + Standard Orders Cluster X + Lux Orders Cluster

CLUSTERWIDE STANDARD ORDERS: CLUSTERWIDE LUX ORDERS:

X + Robot Stamina Cluster

CLUSTERWIDE ROBOT CHARGE LEVEL:

X + Robot Fleet Cluster

CLUSTERWIDE ROBOT FLEET:

READ 4 READ

4 READ

2900 2890 872 15
4 4 4
X + Output Factory A X + Inventory Factory A X + Input Factory A X + Robot Utilization Factory A
0 16 0 100
a0 I
® 350 I
. r .
> - > a
5 & « & m
0 / 15 -
% 0
E
READ 4 READ 4 REAL 4 READ 4
X + Output Factory B X + Inventory Factory B X + Input Factory B X + Robot Utilization Factory B
g - ‘ [
950 2500 f 250 |
» . ;
£ e L T = A Y A |
= T T - 1000 - 100 =
10
& B =
READ 4 READ 4 E Y READ 7
X + Output Factory C X + Inventory Factory C X + Input Factory C X + Robot Utilization Factory C
50 17 a0 a0 100
aoo VD TV IV OV UPPAPOP AP CPCPCP PP OP PP 35
E
i » .
g = e [g
- il T ! T © i =
100 -
0 ‘ s

Figure 8: Cluster- and factory-level metrics visualized in a dashboard in InterSystems IRIS

Execution progress of InterSystems IRIS processes is reflected in the visual trace report (see Figure 9 below). We
can follow the exact sequence, duration and outcome status of actions executed across all the InterSystems IRIS

processes and operations:

Page 6 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

Services Processes Operations
EnsLib.Testing EnsLib.Testing NETLOGO m NETLOGO m NETLOGO NETLOGO m
Service P El FACTORYA FACTORYB FACTORYC PYTHON A PYTHON B PYTHON C
1110 202286 0L 4z:35.618
Ofiras HJ
(2@ LHE VL 2EERD 5y
Request
e —
- Request. “
3
2072-01-16 01:42:33.625
O eqtest)
[
Ezozz—m—m 01.42.336%6
Bl ExecutionReguest \D]
[I
2072-01-16 01:42:33.626
cOi= 0
I
20220116 0TAZ 33626y
[7][[:,‘ ExecufionResponse
I
= 2022-01-16 01:42:33.6%6 h)
2 2 a o o o | =
2 @ o z 2 B @St 0
2 > @ ExecutionRequest
[10][D< 2022-01-16 01:42:33.627 O] ‘
[
GOTA 3628
[11][D utionResponse
[
120 20220 IE 04235628 >{j]
| I
2022-01-16 01:42:33.620
o WO b oreqest ol
3 |
o [O 2072-01-16 01.42:33.620
[14] ExecutionRequest. \D]
2022-01-16 01:57:04.250
[15][[]< EecutionResponse O
I
2022-01-16 01:57:04.290 O]
‘ DG][D ExecutionResponse

Figure 9: Process execution tracing report in InterSystems IRIS

We can control the status of all the message queues behind InterSystems IRIS processes and operations using

gueue monitor:

ulntersystemS’ Management Portal Home About Help Logout

IRIS Data Platform
Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS

Interoperability > Queues

Queues e O
Filter: Results: 12 Active
Aot Suspend Header | Body | Contents [Trace

Name Count « Active Creation Time
PYTHON C 0 1 2022-01-26 00:13:35.246 O Job Status Adapter Retry Message View Full Contents R
PYTHON B 0 1 2022-01-26 00:13:35.163 » O 25488 OK e Evpand Al
PYTHONA 0 1 2022-01-26 00:13:35.093 D:
PYTHON 4 0 2022-01-26 00:13:35.042
NETLOGO.FACTORYC 0 1 2022-01-26 00:13:34.953 Queue Contents <l-- type: isc.py.msg.ExecutionResponse id: 897678 -->
NETLOGO.FACTORYB 0 1 2022-01-26 00:13:34.880 i<ExecutionResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
NETLOGO.FACTORYA 0 1 2022-01-26 00:13:34.771 O Index Priority Message ID 3)(mlns:s: f‘vttp://www.w3.or‘g/zeel/XMLSchema >
» NETLOGO.CLUSTER 0 1 2022-01-26 00:13:34.700 <variables
— — No Results i<VariablesItem VariablesKey="Forecast">{"DEMAND@": {"@": 116},
EnsLib.Testing.Process 0 0 2022-01-26 00:13:34.630 : {"DEMAND1": {"@": 78}, "CHARGE": {"@": 12597}, "FORECAST": {"@":
Ens.ScheduleHandler 0 0 2022-01-26 00:13:34.560 i |12488}}</VariablesTtem> 4
Ens.Alarm 0 0 2022-01-26 00:13:34.416 Pty
Ens.Actor 4 0 2022-01-26 00:13:34.293] :
i</ExecutionResponse>

Figure 10: Queue monitor in InterSystems IRIS

As it was mentioned in section “Entities, state variables, and scales” above (subsection “Scales”), there is no

explicit process schedule or cycle duration intended in the prototype. By varying the length of execution delays in
InterSystems IRIS processes and NetLogo models, we can implement any required execution pace. The lack of pre-
determined execution sequence among InterSystems IRIS processes and NetLogo models is fundamental for

emergence and stochasticity aspects of the prototype (read more in the next section).

4. Design concepts

4.1 Basic principles

Page 7 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

Agent-based simulation using factory-level NetLogo models allows to approximate rather fairly the dynamics of
some major factory-level metrics: supplies intake, inventories, product output, robot utilization, etc. However, for
cluster-level metrics, a simple aggregation of factory-level metrics read from separate factories, is not enough — we
need to model connections among the factories. This is where InterSystems IRIS starts playing its orchestrator role
by simulating inter-factory exchanges and dependencies. For example, in our prototype, output from factory C is
input for factory A. Factory C locks the work directory and re-writes OutputC.csv file containing (among other
metrics) its current simulation cycle’s dispatch, say, 10 units. Factory A systematically (at a frequency implemented
in Factory A model) attempts reading OutputC.csv and importing Factory C output from it as supply intake (input) —
if the work directory is not locked by other models or processes. InterSystems IRIS

process NETLOGO.CLUSTER systematically (at its own frequency) attempts

reading OUTPUTA, OUTPUTB and OUTPUTC tables — once the working directory is not locked by other models or
processes. This way, InterSystems IRIS allows NetLogo models compete for access to the work directory, thus
imitating real-life “execution congestion” taking place in any connected cluster of operations. On the other hand,
InterSystems IRIS forces its “super-observer” NETLOGO.CLUSTER process participate in competition for access
to the work directory (in company with factory-level NetLogo models), to guarantee that the output data it
consolidates are not being altered during consolidation. We will describe other design aspects of our prototype
further in this section.

4.2 Emergence

As mentioned above, NetLogo models and InterSystems IRIS processes (both factory- and cluster-level) compete
for access to the work directory. l.e., apart from emergence implemented in each of the NetLogo models (i.e.,
stochasticity of operation quantities and robot destinations, read more below in subsection “Stochasticity”), an
additional layer of emergence is added through InterSystems IRIS processes:

L
|
o
X

o | saL x Business Process Designer x

C A (@ localhost:52773/csp/lab/EnsPortal BPLEditor.zen?BP=NETLOGO.FACTORYA.bp! 6

e e
InterSystemS" Management Portal Home — About Help Logout m
IRIS Data Platform

Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS

&
@
S
(3

Interoperability > Business Process Designer - (NETLOGO.FACTORYA)

[New || Open][Save]I Save As][Compile] 75% ~ -Add Activity-] “Group Items-__ v/ | X =+

Nom Modifié le Type Taille «
s Accés rapide

github 05/07/2021 01:06 Dossier de fichiers

@ OneDrive - InterSystems Col snakemake 05/07/2021 01:06 Dossier de fichiers

\/mcféb @ _Initialize Factories 21/01/2022 01:04 Dossier de fichiers
T data 10/07/2021 23:06 Dossier de fichiers
T
4 ~- Lecteur USB (E) mapped_reads 11/07/2021 19:43 Dossier de fichiers
Qg @ Réseau sorted_reads 12/07/2021 11:52 Dossier de fichiers
| .gitpod.yml 08/03/2021 18:23 Fichier YML 1Ko
o B Abins.csv 12/07/2021 17:17 Fichier CSV Micro 1Ko
Lock B Ancsv 1 2117:17 Fichier CSV Micro 1Ko
¥ & Bbins.csv 12/07/2021 17:17 Fichier CSV Micro. 1Ko
B Bn.csv 12/07/2021 17:17 Fichier CSV Micro. 1Ko
scode> . © BWA2BCF001.5vg 11/07/2021 20:57 Microsoft Edge H 5Ko
Experiment Dynamics
] € swa2scrooz.svg 11/07/2021 20:57 Microsoft Edge H 7Ko
| @ Bwa2rLT001.5vg 12/07/2021 17:17 Microsoft Edge H. 5Ko
= @ swazpLT0025vg 12/07/2021 17:17 Microsoft Edge H 7Ko
Update Cubes | BWA2PLT003.png 12/07/2021 17:17 Fichier PNG 12Ko
— T T ® &| BWA2PLT004.png 12/07/2021 17:17 Fichier PNG 12 Ko
| BWA2PLT005.png 12/07/2021 17:17 Fichier PNG 19 Ko
<code>) | Dockerfile 2118:23 Fichier Ko
Unlock .
| environment.yaml 211823 Fichier YAML 1Ko
) N
B FactoryA.csv 26/01/2022 02:40 Fichier CSV Micro. 1Ko
! 1 FactoryB.csv 26/01 Fichier CSV Micro, 1Ko
\\ ; B FactoryC.csv 26/01 02:40 Fichier CSV Micro. 1Ko

B LockA.csv 26/01/2022 12:47 Fichier CSV Micro. 0Ko
& NETLOGOO1.png 21/12/2021 00:13 Fichier PNG 19 Ko

Figure 11: NETLOGO.FACTORYA process locks access to the work directory

Altogether, NetLogo and InterSystems IRIS reproduce competition for access to resources and information,
inevitable in a factory cluster context.

4.3 Adaptation

Cluster-level adaptation is implemented in NetLogo models: as the pool of customer orders grows for a factory itself
and for its consumer factory (e.g., Factory B consumes output of Factory A), factory-level demand
(demandO and demand1 global variables, standing for standard and deluxe demand, respectively) takes into

Page 8 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

account both the factory’s own outstanding orders and those of the consumer factory (reqO and reql global
variables, denoting consumer factory’s outstanding standard and deluxe orders):

D> Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM} - o X
File Edit Tools Zoom Tabs Help
Interface Info Code

® v

Find Check

| Procedures + | [Indent automatically [] Code Tab in separate window

set demand® count orders with [type-of-order = @] + req@
set demandl count orders with [type-of-order = 1] + reql

< >

Figure 12: Factory A includes in its demand outstanding customer orders of Factory B

The current size of the customer orders pool is written on every simulation cycle by each factory into
its OutputA/B/C.csv file, making it possible for supplier factories to read order pool size of consumer factories.

Factory-level demand participates in computing a factory’s write-off of supplies from its loading docks to production,
on each simulation cycle:

P Robotic Factory A - NetLogo {C:A\Users\slukyanc\eclipse-workspace\DSTI_ABM} - o x
File Edit Tools Zoom Tabs Help
Interface Info Code

L

| Procedures v | [Indent automatically [] Code Tab in separate window
Find. Chek N Tl

~
set writeoff round (max(list (sum [supply] of loading-docks * spenddocks) (demande + demandl)) + random-normal meansupp max(list (sum [supply] of loading-docks * spenddocks) (demande + demandl) v
< >

Figure 13: Factory A computes its write-off into production based on its demand

4.4 Objectives

The final objective of each factory is to service a growing flow of incoming customer orders by manufacturing
standard or deluxe garments. Each factory has its own pool of customer orders, but it also attempts to dispatch the
output that remains after servicing its orders in a particular cycle, to its consumer factory. As mentioned above, the
size of the consumer factory’s outstanding orders pool is considered by the supplier factory while estimating
demand and computing write-offs into production. Production execution at each factory is dependent on the
performance of its robot fleet that transports items among its machines and warehouses. Therefore, reaching final
objectives has critical dependency on the performance of a factory’s robot fleet. This explains why outstanding
order pool sizes (by product type) neighbor robot fleet indicators (robot energy level and robot fleet size) in the
cluster-level part of the cockpit dashboard. If we formulate the very essence of the objectives in several words, it
would be “push the size of outstanding orders pool down while pushing the level of robot battery charge up”.

4.5 Learning

Putting aside that self-organizing capacity that agent-based approach has by design, we added to our prototype
explicit machine learning mechanisms. We implemented training a linear regression model to extract dependency
of the charge level of all the cluster’s robots (in the next n-th simulation cycle, e.g., the next 1 cycle) on the sizes of
the cluster’s outstanding order pools for standard and deluxe items (observed during a certain moving period, e.g.,
last 50 simulation cycles). That machine learning mechanism was implemented in NETLOGO.CLUSTER process
using ML Toolkit for InterSystems IRIS extension and is run in each cycle using PYTHON operation for
interoperability with local Python:

Page 9 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

O | [sa X | [®] Production Configuration x |+ - o X

C M @© localhost:52773/csp/lab/EnsPortal.ProductionConfig.zen?$NAMESPACE =L AB& $NAMESPACE=LAB& 6 a V= 3

é e
|ntersystem5“ Management Portal Home About Help Logout
IRIS Data Platform

Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS

ility > c - (isc.py.test.
Produchon Conf|gurat|on Start 9) Sort: Name Status Number View: -
Category: | Al v Legend Production Settings OGO R
Services + Pr + Operations + Settings [Queue [Log [Messages | Jobs [Actions
(®)NETLOGO.CLUSTERK®) @ PYTHON
(©NETLOGO:FACTORYA Q ¥ & search:
(@ NETLOGO.FACTORYB)
(©NETLOGO FACTORYC L] » Informational Settings

~ Basic Settings
Enabled

» Additional Settings

» Alerting Control

*» Development and Debugging

To view the Production Settings, click on the Production
Settings link in the title area of the configuration diagram.

Figure 14: Cluster-level machine learning in InterSystems IRIS using an operation for Python interoperability

O | [sa X | [®] Business Process Designer x |+ = o X
C @ @ localhost;52773/csp/lab/EnsPortal.BPLEditor.zen?BP=NETLOGO.CLUSTER bpl 5 e = 8

<&
|ntersystem8" Management Portal Home About Help Logout
IRIS Data Platform

Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS

Interoperability > Business Process Designer - (NETLOGO.CLUSTER)

[(wew] [Copen] [save | [savens | [compie]| |75% - -AddActivity- v| | Groupitems- v| U 3¢ X X
[a ol N cal NiC i i Zcoder) B «
L Factory A = L Factory B 7J Factory C fU L Initialize Visualization PjJ

SZ
<Sequence>
Experime+nt Train
O
7
<Sequence>
Experiment Predict
+
o

true.

true

Figure 15: Cluster-level machine learning in InterSystems IRIS

Page 10 of 19

Agent IRIS*

Published on InterSystems Developer Community (https://community.intersystems.com)

O | [sa X [IF] Business Process Designer x

C ® @ localhost:52773/csp/lab/EnsPortal.BPLEditor.zen?BP=NETLOGO.CLUSTER bpl

é
u |nterSYStems' Management Portal

IRIS Data Platform
Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc

Interoperability > Business Process Designer - (NETLOGO.CLUSTER)

Home About Help Logout

Licensed To Preview_Adv.Server_IAM Instance IRIS

[(new) [Copen | [save | [savens | [compie | [75% - -AddActivi- v| | -Group ltems- ~ | X X x 5
Contents of Experiment Train. bl .
NETLOGO.CLUSTER Experiment Train

Last modified: Yesterday, 02:03:50AM

<call> <all>

Read DEMANDO 1 Read DEMAND1 s Read CHARGE . J

_~Line=pd DataFrame([demand0[QTY'],demand 1{ QTY'] charge['QTY']]).T
" Line.columns=("DEMANDO","DEMAND1","CHARGE")

<

~ SELECT QTY FROKMETLOGO.DEMANDO.~ SELECT QTY FROMMETLOGO.DEMAND.~” SELECT QTY FROM NETLOGO.STAMINA
[<call> 1 i

<call> .
Calls an operation or another business process.
View documentation

Name
Model Fit
Caption for shape

X y

200 [[600 | CJpisabled

Position of shape

Annotation
Line=pd.DataFrame([demando['QTY'],d ~
emandl['QTY'],charge['QTY"]]).T -
Line.columns=

4

Target
PYTHON 3
Name of Operation or Process to call
Asynchronous Timeout
2

.
Timeout for synchronous call

~ Request

Request Message Class
isc.py.msg.ExecutionRequest 4

Request Actions +
.| ActionProperty Value

» Jdo, o process.GetAnnotation("Model ¥
»

Figure 16: Cluster-level machine learning in InterSystems IRIS - a linear regression model fit step in

NETLOGO.CLUSTER process

O | [sa X | [&] Business Process Designer x |+

C M (@ localhost:52773/csp/lab/EnsPortal.BPLEditor.zen?BP=NETLOGO.CLUSTER bpl

&
]
)
hid
[}

é
u InterSVStemS" Management Portal

IRIS Data Platform
Server RU-5530LUKYANC2 Namespace LAB switch User slukyanc

Interoperability > Business Process Designer - (NETLOGO.CLUSTER)

[[(wew] [Copen | [save][saveas] [compie | [75% - -Add Activity-
Contents of Experiment Train. g;qu:r(i;ent Train
NETLOGO.CLUSTER B

Last modified: Yesterday, 02:03:50AM

_~SELECT QTY FRONAETLOGO.DEMANDO.~ SELECT QTY FROKNETLOGO.DEMAND],~ SELE
<call> <call> <aall>
[Read DEMANDO P Read DEMAND1 s | Read CHARGE 4J

_~Line=pd.DataFrame([demand0['QTY'], demand1['QTY'],charge['QTY']]).T

Line.columns=("DEMANDO","DEMAND1","CHARGE")

i
<call>

Model Fit =

Home About Help Logout

Licensed To Preview_Adv.Server_IAM Instance IRIS

VALUE EDITOR
Edit a property value

Enter valid ObjectScript code. -
Code

Line=pd.DataFrame([demande['QTY'],demand1['QTY'],charge['QTY']]).T
Line.columns=("DEMAND®" , "DEMAND1" , "CHARGE")
Data=Data.append(Line)

Data=Data.reset_index(drop=True)

if len(Data)>51:
Data.drop(Data.index[Data.index<len(Data)-51],inplace=True)
Data=Data.reset_index(drop=True)
Set=Data
Set.CHARGE=Set.CHARGE.shift(-1)
Set=Set.dropna()
Model=Pipeline([('1r',linear_model.LinearRegression())])
Model.fit(Set[['DEMAND®', '‘DEMAND1']],Set['CHARGE'])
flagmodel=1

Figure 17: Cluster-level machine learning in InterSystems IRIS - a linear regression model fit step’s Python script

in NETLOGO.CLUSTER process

Where there is a predictive model trained, there should be a prediction.

4.6 Prediction

Prediction method of the trained model is applied to the next read of the sizes of the outstanding order pools:

Page 11 of 19

Agent IRIS*

Published on InterSystems Developer Community (https://community.intersystems.com)

O | [sa X | [] Business Process Designer x |+ - X
& (@] &) @ localhost:52773/csp/lab/EnsPortal. BPLEditor.zen?BP=NETLOGO.CLUSTER bpl 76] o= g
u |nterSystemS" Management Portal Home About Help Logout
IRIS Data Platform
Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS
Interoperability > Business Process Designer - (NETLOGO.CLUSTER)
[(new) [Copen | [save | [savens | [compie | [75% - -AddActivi- v| | -Group ltems- ~ | X X A X 2

<sequence

Experiment Predict

Contents of Experiment Predict.
NETLOGO.CLUSTER

Last modified: Yesterday, 02:03:50AM

<call>

Read DEMANDOX

<call>

Read DEMAND1x

<all>

Read CHARGEX

~if flagmodel==1:
Linex=pd.DataFrame([demand0x['QTY'], demand 1x['QTY'] chargex['QTY'I]).T

_~SELECT CAST((SELECT QTY FROM NETLOGSELECT CAST((SELSCT QTY FROM NETLOGSELECT CAST((SELECT QTY FROM NETLOGO.STAMINAA) + (SELECT
L ELEQTY FROM NETLOGO/STAMINAB) # (SELECT QTY FROM NETLOGO.STAMINAC)
AS INT) QTY

<call>
Calls an operation or another business process.
View documentation

Name
Model Predict
Caption for shape

x y
200 |[600

Position of shape

O Disabled

Annotation
if flagmodel==1:

v 8

Linex=pd.DataFrame([demandex['QTY']

Target

PYTHON
Name of Operation or Process to call
Asynchronous Timeout

.
Timeout for synchronous call

~ Request

Request Message Class
isc.py.msg.ExecutionRequest

Request Actions +
Action Property Value

4 ot ol

process.GetAnnotation("Model_~
»

Figure 18: Cluster-level machine learning in InterSystems IRIS - a linear regression model predict step in

NETLOGO.CLUSTER process

O | [sa
é

X | [] Business Process Designer X

4L

C M (@ localhost:52773/csp/lab/EnsPortal.BPLEditor.zen?BP=NETLOGO.CLUSTER bpl

InterSystems"

Management Portal
IRIS Data Platform

Server RU-5530LUKYANC2 Namespace LAB switch User slukyanc

Interoperability > Business Process Designer - (NETLOGO.CLUSTER)

[New]I Open][save]I Save As][Compile]

| 75% v -Add Activity-

Zsequence>

Experiment Predict

Contents of Experiment Predict.
NETLOGO.CLUSTER

Last modified: Yesterday, 02:03:50AM

Licensed To Preview_Adv.Server_IAM

Home About Help Logout

Instance IRIS

VALUE EDITOR

Edit a property value

Enter valid ObjectScript code.
Code

<call>

Read DEMANDOX

" SELECT CAST((SE{5CT QTY FROM NETLOGSELECT CAST((SELSCT QTY FROM NETLOGSELEC]
<call> ELS <all> ELEQ

TV Fi
Read CHARGEX |

3 E E

Read DEMAND1x

_“if flagmodel==1:
Linex=pd.DataFrame([demand0x['QTY'], demand 1x['QTY'] chargex['QTY'T]).T

if flagmodel==1:

else:

Linex=pd.DataFrame ([demandex['QTY'],demandix['QTY'],chargex['QTY'1]).T
Linex. columns=("DEMAND@" , "DEMANDL" , "CHARGE")
if len(Linex)==1:
Prediction=pd.DataFrame(Model.predict(Linex[['DEMANDG' , 'DEMANDL']]))
Prediction.columns=(['QTY'])
Prediction['QTY']=Prediction['QTY'].astype(int)
Forecast=Linex
Forecast['FORECAST']=Prediction['QTY"]
else:
Forecast=Line
Forecast['FORECAST']=0

Forecast=Line
Forecast['FORECAST']=0

_ Y

Figure 19: Cluster-level machine learning in InterSystems IRIS — a linear regression model predict step’s Python

script in NETLOGO.CLUSTER process

Now we have both the actual last read (i.e., in the current cycle) value of cluster-level summary robot charge level,
and the forecast value for the next 1 cycle. We can extend the cockpit dashboard with this information:

Page 12 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

X + Standard Orders Cluster X + Lux Orders Cluster X + Robot Stamina Cluster X + Robot Fleet Cluster

CHARGE LEVEL (ACTUAL): CHARGE LEVEL (FORECAST): CLUSTERWIDE ROBOT FLEET:

CLUSTERWIDE STANDARD ORDERS: CLUSTERWIDE LUX ORDERS: 13849 14068 15
117 150
A 4 4 4
X + Output Factory A X + Inventory Factory A X + Input Factory A X + Robot Utilization Factory A
o o N o A 5
= = an g

READ
X + Output Factory B X + Inventory Factory B X + Input Factory B X + Robot Utilization Factory B

X + Inventory Factory C X + Input Factory C X + Robot Utilization Factory C

LOAD

4 READ

Figure 20: Cluster-level machine learning in InterSystems IRIS — a cockpit dashboard visualizing actual and
forecast robot charge level

Prediction can be instrumental to detect potential problems with robot charge level:

X + Standard Orders Cluster X + Lux Orders Cluster X + Robot Stamina Cluster X + Robot Fleet Cluster
CHARGE LEVEL (ACTUAL): CHARGE LEVEL (FORECAST): CLUSTERWIDE ROBOT FLEET:
CLUSTERWIDE STANDARD ORDERS: CLUSTERWIDE LUX ORDERS: 1425 495 15
42 61
4 4 A A
X + Output Factory A X + Inventory Factory A X + Input Factory A X + Robot Utilization Factory A
w i a0 25
i flﬂ =i Il
s = =
5w ﬁ 155 I S
150 10 I
10 % 0
it U I'l
X + Output Factory B X + Inventory Factory B X + Input Factory B X + Robot Utilization Factory B
> : il
H H \H N I -
: e
7 W
4 4 4 4
X + Output Factory C X + Inventory Factory C X + Input Factory C X + Robot Utilization Factory C
100 150 100
- i
£ 17T g E & o
28 ‘Li 38 , =S T E
A 4 4 R A RE; A

Figure 21: Cluster-level machine learning in InterSystems IRIS — a cockpit dashboard visualizing a detection of an
approaching critical drop of robot charge level

4.7 Sensing

Robots that execute internal factory logistics do some basic sensing by detecting whether it is possible to pick up a
machine’s output, whether recharging their batteries is needed, or whether their presence is urgently required
without waiting for a recharge to complete. For that, they “sense” whether machines or warehouses are present in
their neighborhood. The robot room (where recharging is done) “senses” whether robots are present in its
neighborhood.

4.8 Interaction

Page 13 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

Robots pick up items available at a machine or warehouse, transporting them to another machine or warehouse. Or
more formally, robot agents “interact” with machine agents and warehouse agents. Those interactions are limited to
changing inventory levels at giving and receiving agents, plus changing destination of robot agents. When robots
recharge their battery, an interaction with the robot room takes place: a robot agent needs to spend a certain
number of simulation cycles in the robot room (unless there is an urgent need for robots signaled somewhere on
the factory floor). Besides factory-level interactions, we have cluster-level interactions implemented as inter-factory
dispatch/intake.

4.9 Stochasticity

We modified the original “Robotic Factory” [1] NetLogo model by randomizing quantities in all major interactions:

D> Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM} - o X
File Edit Tools Zoom Tabs Help
Interface Info Code

L I Procedures v I [Indent automatically] Code Tab in separate window
Find. Check
=
set writeoff round (max(list (sum [supply] of loading-docks * spenddocks) (demand® + demandl)) + random-normal meansupp max(list (sum [supply] of loading-docks * spenddocks) (demand® + demandl)) * sigmas
set suppcutter round (writeoff + random-normal meansupp writeoff * sigmasupp)
set prodcutter round (writeoff + random-normal meanprod writeoff * sigmaprod)
set suppstitcher round (suppcutter + random-normal meansupp suppcutter * sigmasupp)
set prodstitcher round (prodcutter + random-normal meanprod prodcutter * sigmaprod)
set suppfinisher round (suppstitcher + random-normal meansupp suppstitcher * sigmasupp)
set prodfinisher round (prodstitcher + random-normal meanprod prodstitcher * sigmaprod)

set production round (prodfinisher + random-normal meanprod prodfinisher * sigmaprod)

< >

Figure 22: Randomizing major interaction quantities in NetLogo

Also, the number of customer orders generated at a factory within one cycle, is made random:

D> Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM} - o X
File Edit Tools Zoom Tabs Help

Interface Info Code

LA | [Procedures~] | A indent avtomatically [Code Tabin separate window

Find.. Check
1 ~
ask loading-docks [

if random 100 < 5 [; additionally, orders come in 5% of the time that can be luxurious, o tandard
hatch-orders round (1 + ticks / 100 * (random 11) / 18) [

set type-of-order random 2
set size 1 set shape "box"
]
1

< >

Figure 23: Randomizing number of generated customer orders in NetLogo

As well as the quantity of the dispatch of items to a consumer factory:

P> Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM}) - o X
File Edit Tools Zoom Tabs Help
Interface Info Code

2 I [Procedures ~ | I [Indent automatically [] Code Tab in separate window

Find Check

ask one-of storages [
set dispatch round (max(list @ (production - count orders)) + random-normal meandispatch max(list @ (production - count orders)) * sigmadispatch) v
< >

Figure 24: Randomizing dispatch quantity in NetLogo

Altogether, the above-mentioned elements of stochasticity (combining with elements of emergence, mentioned
earlier, as well as with stochasticity of destination choice and energy spend/recharge by the robots) assure random
oscillations of all the key quantities in the prototype, making the behavior of the factory cluster non-deterministic.

4.10 Collectives

Collectives of robots, machines, and warehouses form a factory, while factories form the cluster — the collective that
we prototype and explore. Factory-level collectives are generated in NetLogo models on simulation experiment
setup:

Page 14 of 19

Agent IRIS*

> Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM} - o X
File Edit Tools Zoom Tabs Help
Interface Info Code
2 v | | SHident automatcaly [code Tobinseprate v
Find Check
; There are two each of cutters, stitchers and finishers ~
create-cutters 1 [setxy 10 -6 set color blue set shape "x"]
create-cutters 1 [setxy 10 -11 set color blue set shape "x"]
create-stitchers 1 [setxy 4 8 set color red set shape "box 2"]
create-stitchers 1 [setxy 4 3 set color red set shape "box 2"]
create-finishers 1 [setxy @ -4 set color green set deluxe-level 1 set shape "circle” set processing-order? false]
create-finishers 1 [setxy 2 -8 set color green set deluxe-level 2 set shape "circle” set processing-order? false]
create-storages 1 [setxy -6 4 set shape "box” set color magenta set supply @]
create-robot-rooms 1 [setxy -11 -7 set shape "box" set color yellow]
create-loading-docks 1 [setxy 13 4 set shape "box" set color black set supply 500 set shape "box 2"]
create-robots number-of-robots [; creates a variable number of robots and sets their values
setxy random-xcor random-ycor
set color grey
set destination "none”
set laden? false
set energy full-charge
] v
< >

Figure 25: Generating factory-level collectives in NetLogo

The cluster-level collective of factories has a user-definable configuration, implemented in both NetLogo and
InterSystems IRIS. For the purposes of this prototype, as mentioned earlier in section “Design concepts”, a
configuration based on circular flow of inter-factory dispatch/intake interactions, has been applied. This
configuration is put at work and orchestrated via NETLOGO.CLUSTER process in InterSystems IRIS (launches

processes NETLOGO.FACTORYA/B/C and monitors their metrics):

(im] Business Process Designer x |+
75

(@] ") (@ localhost:52773/csp/lab/EnsPortal.BPLEditor.zen?BP=NETLOGO.CLUSTER bpl
Home About Help Logout

é
u InterSYStemsm Management Portal

IRIS Data Platform
Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS
Interoperability > Business Process Designer - (NETLOGO.CLUSTER)
[(wew) [Copen | [save][saveas] [compie | [75% - Add Activit- ~| | -Group ltems- v ¥ X x 2
= «

Business Process
NETLOGO.CLUSTER

Last modified: Tuesday, January 25, 2022, 02:03:50AM

_~import pandas as pd
¢ from sklearn import linear_model
from sklearn.pipeline import Pipeline

L < i
= D (@ = B [Z=) [<code> B -y - ==
Factory A U l FactOUFYB 5 J l Factory C z U L Imt\ahze\/zuahzatlon J I~ 8| A ‘;1_,, i 3 u; mi
; i | — | i F

/ / v
/ Soodes
/ Initialize Cubes] T

~

Figure 26: Orchestrating the cluster-level collective via InterSystems IRIS

Inter-factory interaction mechanisms in NetLogo have been described above in subsection “Interaction”. NetLogo
models of the three factories make the implementation of the cluster-level collective complete.

4.11 Observation

Factory-level data generated via a NetLogo experiment, such as various quantities and other metrics, are
systematically exported (on every simulation cycle) in a .csv file and become available for other NetLogo

experiments plus for InterSystems IRIS processes:

Page 15 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

D> Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM}

- o X
File Edit Tools Zoom Tabs Help
Interface Info Code
Fﬁ Cﬁk I Procedures v I [Indent automatically [Code Tab in separate window
set out-list lput (list dispatch sum [supply] of storages intake efficiency stamina count orders with [type-of-order = @] count orders with [type-of-order = 1] fleet) out-list "
csvito-file "C:/Inte ms/IRIS/CSP/lab/FactoryA.csv” out-list v
< >
Figure 27: Exporting metrics from a Factory A experiment's cycle to a .csv file
Y Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM} - o X
File Edit Tools Zoom Tabs Help
Interface Info Code
Fﬁ cEZx | [Procedures + | [Indent automatically [] Code Tab in separate window
file-open "C:/InterSystems/IRIS/CSP/lab/FactoryC.csv” 2
set in-list csv:from-row file-read-line v
y >

Figure 28: Reading metrics from a Factory C experiment’s cycle via a .csv file into a Factory A experiment’s cycle

(im} Business Process Designer x B

C @ @ localhost:52773/csp/lab/EnsPortal BPLEditor.zen?BP=NETLOGO.CLUSTER bpl

< s
u Intersystems Management Portal Home About Help Logout
IRIS Data Platform

Server RU-5530LUKYANC2 Namespace LAB Switch User slukyanc Licensed To Preview_Adv.Server_IAM Instance IRIS

&
]
o
kid
(]

Interoperability > Business Process Designer - (NETLOGO.CLUSTER)

I New]I Open][Save II Save As][Compile] 75% v -Add Activity- v| | -Group ltems- v | ¢

xX =

code>)

Experiment Dynamics [
General - Activity | Preferences
View documentation

<code> S

Update Cubes "
Experiment Dynamics
Caption for shape

I‘ .I .I<

X
<od 1145|1250 = () Disabled
Unlock Position of shape
Annotation
[‘
Code

< NETLOGO.DEMAND@A) + (SELECT QTY alx
<code> FROM NETLOGO.DEMAND®B) + (SELECT

QTY FROM NETLOGO.DEMANDGC))

&sq1(DELETE FROM NETLOGO.DEMAND1)

&sqL(INSERT INTO NETLOGO.DEMAND1

' SELECT NULL, @, (SELECT QTY FROM
Shranchs NETLOGO.DEMAND1A) + (SELECT QTY
' FROM NETLOGO.DEMAND1B) + (SELECT
QTY FROM NETLOGO.DEMAND1C))
&sql(DELETE FROM NETLOGO.FLEET)
&sql(INSERT INTO NETLOGO.FLEET
SELECT NULL, @, (SELECT QTY FROM
NETLOGO.FLEETA) + (SELECT QTY FROM
NETLOGO.FLEETB) + (SELECT QTY FROM
J NETLOGO. FLEETC))

4

N O pisable code validation

Figure 29: Reading and consolidating factory-level metrics from InterSystems IRIS tables

5. Initialization

The initial states of each of the factory-level models are determined via setup procedures in respective NetLogo
models. As we could see from subsection “Collectives” above, agent initial properties are initialized at creation: x-
and y-coordinates (influence distances that robots will need to cover), machine classes and statuses (influence the

type of output and availability of machines), supply quantities (influence how long a machine or a warehouse will be
able to run in the beginning without replenishment), etc.

Global variables get initialized as well as part of setup procedures:

Page 16 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

> Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTL_ABM} N o X
File Edit Jools Zoom Tabs Help
Interface Info Code

®

I Procedures v | [Indent automatically [] Code Tab in separate window
Find Check

set coverdocks @.3
set coverstorages 9.3
set spenddocks @.1
set cyclel @

set cycle2 @

set meanprod @

set meansupp @

set meandispatch @
set sigmaprod @.1
set sigmasupp 0.1

set sigmadispatch 0.1
set intake @

set reqe @

set reql @

set dispatch @

set demande ©

set demandl @

set cash @

set backlog @

set full-charge 1000
set go-home 250

set charge-tick 250
set just-in-time-supply-robot 500

<

Figure 30: Initializing factory-level global variables as part of setup procedure

Certain factory-level global variables are re-initialized at each simulation cycle as part of go procedure to guarantee
that if due to lock resolution the .csv file of the supplier or consumer factory is not accessible, and the factory model
skips a read, the variables that depended on that read get filled with zero values (some of them,

e.g., intake and dispatch, may be re-computed to non-zero values in the next cycle regardless of any lock
resolution outcome):

D Robotic Factory A - NetLogo {C:\Users\slukyanc\eclipse-workspace\DSTI_ABM) - o X
File Edit Tools Zoom Tabs Help
Interface Info Code

L v I Procedures + I [Indent automatically [] Code Tab in separate window
Find. Check
7
set intake @
set reqe @
set reql @

set dispatch @

<

Figure 31: Re-initializing factory-level global variables as part of go procedure

6. Input data

The .csv files (OutputA.csv, OutputB.csv and OutputC.csv) that are available

at NETLOGO.CLUSTER InterSystems IRIS process start and that contain initial values of certain factory-level
metrics, are the carriers of input data for the factories. Most of the times, we preferred indicating zeroes as initial
values in each factory’s .csv file:

| FactoryB.csv - Bloc-notes

Fichier Edition Format Affichage Aide
p,e,0,0,0,0,0,0

Ln 1, Col 1 100% Windows (CRLF) UTF-8

Figure 32: Initial Factory B metric values on its .csv file

Once NETLOGO.FACTORYA/B/C processes (launched by NETLOGO.CLUSTER process), in their turn, launch
each its own NetLogo experiment, the .csv files start getting updated with the metric values from a current
simulation cycle at each of the factories:

D> Robotic Factory B - NetLogo {C\Users\slukyanc\eclipse-workspace\DSTI_ABM}
File Edit Jools Zoom Tabs Help
Interface Info Code

® v

| [Procedures~| | EAndent automaticaly [Code Tab i separate window
Find Check

set out-list lput (list dispatch sum [supply] of storages intake efficiency stamina count orders with [type-of-order = @] count orders with [type-of-order = 1]| fleet) out-list
csvito-file "C:/InterSystems/IRIS/CSP/lab/FactoryB.csv” out-list
<

Figure 33: Update of Factory B metric values on its .csv file

Once the metric values get updated, they can be read by other factories from the .csv files:

| FactoryB.csv - Bloc-notes

Fichier Edition Format Affichage Aide
p,23,0,0.993,5908,0,61,5

Ln 1, Col 1 100% Windows (CRLF) UTF-8

Page 17 of 19

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

Figure 34: Updated Factory B metric values on its .csv file

7. Submodels

As mentioned in the very beginning of this text, the factory-level NetLogo models in our prototype are adaptations
of “Robotic Factory” model [1] — we actively encourage the reader to use the link provided in “References” section
to read the documentation and go through the code of that original model.

All the most important new/adapted elements in the NetLogo models implemented in our prototype were covered
with reasonable detail through this text, and we are convinced that this is the best way to explain them (rather than
exposing the reader to a complete NetLogo code in this section).

By the same token, InterSystems IRIS objects (production, processes, operations, tables, cubes, pivots,
dashboard, etc.) are all stored as code in the platform, although we have not quoted a single line of their code in
this text, again, because we think that the most relevant view here was visual view.

Nevertheless, should the reader be willing to get this prototype’s material (fully or partially) on their hands in order
to materialize this or accelerate their own prototype — the author would be happy to share it once contacted via
LinkedIn.

Findings

We would like to conclude by formulating the main findings from our prototyping and exploration experience
described in this paper:

* The key win from in-platform implementation of agent-based simulations is the end-to-end control and
cluster-to-floor transparence of the resulting solution: the specialized functionality available via simulation
suites (NetLogo, in our case) gets complemented by the orchestration functionality available via a data
platform (InterSystems IRIS), allowing modeling connected factory clusters more efficiently and credibly

* An advantage that analyst audience could consider important, is that the emergence and development of
various inventory dynamics patterns (that are usually one of the most studied aspects in operations
research) — bullwhips, hoarding, stockouts, etc. — become way easier to predict, detect and visualize
graphically across the entire cluster’s supply chain (we could see some examples in this paper visualized in
the cockpit dashboard screenshots)

* An advantage that IT-centric audience may find relevant, is that instead of a patchwork of separate solution
pieces we obtain a scalable all-embracing DevOps framework, in which specialized ABM suites live in
harmony with mathematical modeling suites (like Python, in our case) and with other components of the
overall solution — while the data platform (InterSystems IRIS) assures seamless interoperability of all the
components plus lifecycle continuity of the resulting solution

References

[1] Martin, K. and Wilensky, U. (2021). NetLogo Robotic Factory
model. http://ccl.northwestern.edu/netlogo/models/RoboticFactory. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL

[2] K. Ferdows & C. Carabetta (2006). The effect of inter-factory linkage flexibility on inventories and backlogs in
integrated process industries. International Journal of Production Research, 44:2, 237-255,
DOI: 10.1080/00207540500268947

[3] A. H.C. Ng, J. Bernedixen, M. Urenda Moris, M. Jagstam (2011). Factory flow design and analysis using internet-
enabled simulation-based optimization and automatic model generation. Proceedings of the 2011 Winter
Simulation Conference, DOI: 10.1109/WSC.2011.6147930

#Aurtificial Intelligence (Al) #Analytics #Convergent Analytics #Interoperability #InterSystems IRIS

Page 18 of 19

https://www.linkedin.com/in/lukyanchikov/
https://www.linkedin.com/in/lukyanchikov/
http://ccl.northwestern.edu/netlogo/models/RoboticFactory
https://www.tandfonline.com/doi/abs/10.1080/00207540500268947
https://ieeexplore.ieee.org/document/9383887
https://community.intersystems.com/tags/artificial-intelligence-ai
https://community.intersystems.com/tags/analytics
https://community.intersystems.com/tags/convergent-analytics
https://community.intersystems.com/tags/interoperability
https://community.intersystems.com/tags/intersystems-iris

Agent IRIS*
Published on InterSystems Developer Community (https://community.intersystems.com)

Source URL:https://community.intersystems.com/post/agent-iris

Page 19 of 19

https://community.intersystems.com/post/agent-iris

