
JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

        Article      
 Yuri Marx  · Jan 12, 2022  12m read   
   Open Exchange 
  

JSON Schema applied to InterSystems IRIS
The JSON is a data document free of types and validation rules. However, in some scenarios it is important that the
JSON document has type and business rules validation, especially in interoperability scenarios. This article
demonstrates how you can leverage a market-defined JSONSchema technology that is open for everyone to use
and do advanced validations.

About JSON
According to json.org, “JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript
Programming Language Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is
completely language independent but uses conventions that are familiar to programmers of the C-family of
languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON
an ideal data-interchange language”. (Source: https://www.json.org/json-en.html). An example of a JSON
document could be:

Page 1 of 9

https://community.intersystems.com/user/yuri-marx
https://openexchange.intersystems.com/package/IRIS-JSON-Schema-Validator
https://openexchange.intersystems.com/package/IRIS-JSON-Schema-Validator
https://www.json.org/json-en.html


JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

About JSON Schema
According to json-schema.org, “JSON Schema is a vocabulary that allows you to annotate and validate JSON
documents.”.
If JSON is easy for humans to read, write and understand, why do we need to apply a schema to validate JSON
documents/content? The main reasons are:

1. To define a clear contract to interoperate JSON based data between partners and their applications.
2. To detail, document and describe your JSON files, making it easier to use.
3. To validate JSON data for automated testing, ensuring the quality of the requests and responses.
4. To generate JSON sample and/or real data from the JSON Schema.
5. To apply business/validation rules into JSON content, instead of creating language dependent validations.
6. To support the “contract first approach” on the development of REST API. More details on 

https://swagger.io/blog/api-design/design-first-or-code-first-api-develo....

JSON Syntax
To understand the role of JSON Schema in a JSON game, it is necessary to know more about JSON syntax. The
JSON syntax is derived from JavaScript object notation syntax, so, the syntax rules are equal to JavaScript objects.
The JSON rules are next (source: https://www.w3schools.com/js/js_json_syntax.asp ):

1. Data must be specified in name/value pairs.
2. Data must be separated by commas.
3. Curly braces hold objects.
4. Square brackets hold arrays.

The JSON Data consists of a name/value pair with a field name (in double quotes), followed by a colon and
followed by a value. Example:

JSON names require double quotes and refers to JavaScript objects and to InterSystems IRIS ObjectScript
Dynamic Object (%Library.DynamicObject) too. More details in 
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls....

In JSON, values must be one of the following data types:

Page 2 of 9

https://swagger.io/blog/api-design/design-first-or-code-first-api-development/
https://www.w3schools.com/js/js_json_syntax.asp
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GJSON_intro#GJSON_intro_methods


JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

A string, must be between “”. Sample: “a string”.
A number, must be integer or decimal values. Sample: 10 or 20.23.
An object, must be between {}. Sample: {“firstName”: “John”}.
An array, must be between []. Sample: [{“firstName: “John”},{“firstName”: “Anna”}].
A Boolean, must be true or false. Sample: {“isDead”: false}.
A null, to set no value.

When you apply a JSON document to a language object, these syntax rules are validated, but sometimes, it is
necessary to establish business rules too. JSON Schema is used for this, to expand JSON basic rules with rules
specified in JSON Schema documents.
The InterSystems IRIS has full support for JSON basic rules, and JSON content is very elegant to read or write.. It
is easier than any other programming language, see a sample:
InterSystems IRIS Object Script writing JSON Java writing JSON
set dynObject1 = ##class(%DynamicObject).%New()
set dynObject1.SomeNumber = 42
set dynObject1.SomeString = "a string"
set dynObject1.SomeArray =
##class(%DynamicArray).%New()
set dynObject1.SomeArray."0" = "an array element"
set dynObject1.SomeArray."1" = 123
dynObject1.%ToJSON()

 
//First Employee
JSONObject employeeDetails = new JSONObject();
employeeDetails.put("firstName","Lokesh");
employeeDetails.put("lastName", "Gupta");
employeeDetails.put("website","howtodoinjava.com");
JSONObject employeeObject = new JSONObject(); 
employeeObject.put("employee", employeeDetails);

//Second Employee
JSONObject employeeDetails2 = new JSONObject();
employeeDetails2.put("firstName", "Brian");
employeeDetails2.put("lastName", "Schultz");
employeeDetails2.put("website", "example.com");

JSONObject employeeObject2 = new JSONObject(); 
employeeObject2.put("employee", employeeDetails2);

//Add employees to list
JSONArray employeeList = new JSONArray();
employeeList.add(employeeObject);
employeeList.add(employeeObject2);
employeeList.toJSONString();

While ObjectScript is a dynamic language, allowing setting JSON properties as object properties, other languages,
like Java, force you to set key and values inside objects. On the other hand, Java and other languages support
JSON Schema using open source and commercial packages, but the ObjectScript does not support  JSON
Schema at the moment. See the list from json-schema.org (source: https://json-schema.org/implementations.html):

NET

Json.NET Schema 2019-09, draft-07, -06, -04, -03 (AGPL-3.0-only)
JsonSchema.Net 2020-12, 2019-09, draft-07, -06 (MIT)

C++

f5-json-schema draft-07 (Boost Software License 1.0)
JSON schema validator for JSON for Modern C++ draft-07 (MIT)
Valijson draft-07 header-only library, works with many JSON parser implementations (BSD-2-Clause)
Jsoncons draft-07 header-only library (Boost Software License 1.0)

Page 3 of 9

https://json-schema.org/implementations.html


JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Java

Snow 2019-09, draft-07, -06 Uses Maven for the project and Gson under the hood. (GNU Affero General
Public License v3.0)
Vert.x Json Schema 2019-09, draft-07 includes custom keywords support, custom dialect support,
asynchronous validation (Apache License, Version 2.0)
Everit-org/json-schema draft-07, -06, -04 (Apache License 2.0)
Justify draft-07, -06, -04 (Apache License 2.0)
Networknt/json-schema-validator draft-07, -06, -04 Support OpenAPI 3.0 with Jackson parser (Apache
License 2.0)
Jsonschemafriend 2019-09, draft-07, -06, -04, -03 (Apache License 2.0)

JavaScript

Ajv 2019-09, 2020-12, draft-07, -06, -04 for Node.js and browsers - supports user-defined keywords and
$data reference (MIT)
Djv draft-06, -04 for Node.js and browsers (MIT)
Hyperjump JSV 2019-09, 2020-12, draft-07, -06, -04 Built for Node.js and browsers. Includes support for
custom vocabularies. (MIT)
Vue-vuelidate-jsonschema draft-06 (MIT)
@cfworker/json-schema 2019-09, draft-07, -06, -04 Built for Cloudflare workers, browsers, and Node.js
(MIT)

Python

jschon 2019-09, 2020-12 (MIT)
jsonschema 2019-09, 2020-12, draft-07, -06, -04, -03 (MIT)
fastjsonschema draft-07, -06, -04 Great performance thanks to code generation. (BSD-3-Clause)
jsonschema-rs draft-07, -06, -04 Python bindings to Rust’s jsonschema crate (MIT)  

This is a sample how to use JSON schema to validate JSON content (using Python, source: 
https://jschon.readthedocs.io/en/latest/):

Page 4 of 9

https://jschon.readthedocs.io/en/latest/


JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 5 of 9



JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

Fortunately, IRIS allows you to create packages or frameworks using the programming language of your choice
(.NET or Java using PEX or Language Server). So, it is possible to create an IRIS extension package to handle
JSON Schema in IRIS. Another possibility is to use Embedded Python and create a JSON validation method class
(in the version 2021.2+).

Extending the InterSystems IRIS to support JSON Schema using Java Language
Server (Java Gateway)
Among Java frameworks, the networknt/json-schema-validator is used the most to validate JSON using JSON
Schema.
To use this Java framework, you can get the application https://openexchange.intersystems.com/package/IRIS-
JSON-Schema-Validator. This application has the following files and folders:

 

1. The folder jgw has the necessary files to create a
Java Gateway (bridge to allow communication between
Java and IRIS classes);

2. The iris-json-schema-1.0.0.jar has the Java classes
and libraries (including json-schema-validator) to service
JSON Schema validations;

3. The JSONSchemaValidator.cls has the ObjectScript
code to use the Java class and do JSON validations
using JSON schema by the validation rules;

4. The Dockerfile and docker-compose.yml run the Java
Gateway and the IRIS as docker instances.

Page 6 of 9

https://openexchange.intersystems.com/package/IRIS-JSON-Schema-Validator
https://openexchange.intersystems.com/package/IRIS-JSON-Schema-Validator


JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

The Java Class has a validation method, which uses the framework json-schema-validator to validate the JSON
Schema and the JSON, and to return the validation results. See the Java Code:
   
Java Class for JSON Schema Validation
 

The InterSystems IRIS uses this Java validation method to validate JSON content. To do that it is necessary to
create a JAR file with the validate class inside (iris-json-schema-1.0.0.jar) and to configure a Java Gateway (bridge
between Java and IRIS communication), allowing ObjectScript to call the Java methods.
The ObjectScript code which uses the Java Class and the JSONSchemaValidator class is presented here:
   
Final Java Class read to Validate JSON inside IRIS
 

With this ObjectScript class and the Validate class method, it is possible to use any JSON content and any JSON
Schema definition to validate basic and advanced validation rules.
To see this, execute these steps:

1. Go to https://openexchange.intersystems.com/package/IRIS-JSON-Schema-Validator

2. Git-clone the repository into any local directory

Page 7 of 9

https://openexchange.intersystems.com/package/IRIS-JSON-Schema-Validator


JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

$ git clone https://github.com/yurimarx/iris-json-schema.git

3. Open the terminal in this directory and run it:

$ docker-compose build

4. Run the IRIS container with your project:

$ docker-compose up

5. Go to the IRIS terminal (open a new VSCode Terminal)

docker exec -it iris-json-schema_iris_1  bash iris session iris

6. Change to the IRISAPP namespace

set $namespace = "IRISAPP"

7. Get a sample JSON Schema

set jsonSchema = ##class(dc.irisjsonschema.JSONSchemaValidator).GetJSONSchema()

8. Get a sample valid JSON

set jsonContent = ##class(dc.irisjsonschema.JSONSchemaValidator).GetValidSampleJSON()

9. Get a validation equals to valid

set st = ##class(dc.irisjsonschema.JSONSchemaValidator).Validate(jsonSchema,jsonConte
nt,.result)
write result

10. Now, get a sample INVALID JSON

set jsonContent =   ##class(dc.irisjsonschema.JSONSchemaValidator).GetInvalidSampleJS
ON()

11. After that, get validation equals to INVALID  

set st = ##class(dc.irisjsonschema.JSONSchemaValidator).Validate(jsonSchema,jsonConte
nt,.result)
write result

12. The JSON Schema used was:
   
JSON Schema used to define the validation rules
 

This JSON Schema configured the fields and the tags array with limited values (enum) as required.

Page 8 of 9



JSON Schema applied to InterSystems IRIS
Published on InterSystems Developer Community (https://community.intersystems.com)

The types of the JSON fields are defined too. So, for this schema the following JSON Object is valid:

set obj = {}
set obj.name = "Agent 007"
set obj.artist = "Pierce Brosman"
set obj.description = "007 actor"
set tags = ["license","kill"]
set obj.tags = tags

All properties use the right data type and the tags use values inside values allowed in the Schema for this array.
Now, see a JSON Object invalid:

set obj = {}
set obj.name = "Agent 007"
set obj.artist = "Pierce Brosman"
set obj.description = 1
set tags = []
set tags."0" = "license" 
set tags."1" = "love"
set obj.tags = tags

This object sets an integer property to a description (the valid type is string) and sets the  value “love”, out of valid
values allowed to array tags.
The site https://json-schema.org/ has tools, samples and learning resources to learn on how to validate and write
advanced validation rules using JSON Schema.

#JSON #InterSystems IRIS
Check the related application on InterSystems Open Exchange
 
 

    Source URL:https://community.intersystems.com/post/json-schema-applied-intersystems-iris 

Page 9 of 9

https://json-schema.org/
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/IRIS-JSON-Schema-Validator
https://community.intersystems.com/post/json-schema-applied-intersystems-iris

