
Deploy IRIS Application to Azure Using CircleCI
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Mikhail Khomenko · Jan 5, 2022 8m read

Deploy IRIS Application to Azure Using CircleCI
We’ve already considered how to run an IRIS-based application in GCP Kubernetes in Deploying
InterSystems IRIS Solution into GCP Kubernetes Cluster GKE Using CircleCI. Additionally, we’ve seen how to
run an IRIS-based application in AWS Kubernetes in Deploying a Simple IRIS-Based Web Application Using
Amazon EKS. Now, let’s look at how to deploy an application to the Azure Kubernetes Service (AKS).

Azure
For this article, we’ll use an Azure free subscription. You can find pricing details on their pricing page.

After registration, you’ll see the Microsoft Azure portal:

The portal is handy, but we won’t use it in this article. Instead, let’s install the Azure command-line interface
. The most recent version at the moment of writing is 2.30.0.

$ az version

{

 "azure-cli": "2.30.0",

 "azure-cli-core": "2.30.0",

 "azure-cli-telemetry": "1.0.6",

 "extensions": {}

}

Now let’s log in to Azure:

$ az login

Page 1 of 8

https://community.intersystems.com/user/mikhail-khomenko
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://community.intersystems.com/post/deploying-simple-iris-based-web-application-using-amazon-eks
https://community.intersystems.com/post/deploying-simple-iris-based-web-application-using-amazon-eks
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/pricing/#product-pricing
https://portal.azure.com/#home
https://docs.microsoft.com/en-us/cli/azure/

Deploy IRIS Application to Azure Using CircleCI
Published on InterSystems Developer Community (https://community.intersystems.com)

CircleCI Pipeline
We’re going to set up AKS and install an IRIS application using the power of CI/CD with CircleCI. This
means that we take a GitHub-based project, add a couple of pipeline files along with infrastructure as
code, push changes back to GitHub, and check the results in a friendly CircleCI UI.

With a GitHub account, it’s effortless to create an integration with CircleCI. For more information, see this
article on Seamless integration with GitHub.

Let’s take an updated version of the project we’ve already used in Deploying InterSystems IRIS Solution into
GCP Kubernetes Cluster GKE Using CircleCI ̶ namely, secured-rest-api. Open it, click Use this Template,
and create a version in a new repository. We’ll refer to code samples located there throughout this article.

Clone a repository locally and create a .circleci/ directory with a couple of files:

$ tree .circleci/

.circleci/

??? config.yml

??? continue.yml

We use a dynamic configuration and path filtering to enable the pipeline to run as a whole or just its parts
depending on which files have changed. In our case, we run a Terraform job only when Terraform code
changes. The first file, config.yml, is simple. We call a second part, .circleci/continue.yml, and pass a
particular Boolean parameter if the Terraform code is up-to-date.

$ cat config.yml

version: 2.1

Enable CircleCI's dynamic configuration feature

setup: true

Enable path-based pipeline

orbs:

 path-filtering: circleci/path-filtering@0.1.0

workflows:

 Generate dynamic configuration:

 jobs:

 - path-filtering/filter:

 name: Check updated files

 config-path: .circleci/continue.yml

 base-revision: master

 mapping: |

 terraform/.* terraform-job true

Before discussing a second file, continue.yml, let’s add this secured-rest-app project to CircleCI and push
updates with .circleci/config.yml to GitHub:

$ git add .circleci/config.yml

$ git commit -m "Add circleci config.yml"

$ git push

Page 2 of 8

https://circleci.com/docs/
https://circleci.com/integrations/github/
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://github.com/intersystems-community/secured-rest-api
https://github.com/myardyas/secured-rest-api
https://circleci.com/docs/2.0/configuration-cookbook/?section=examples-and-guides#dynamic-configuration
https://circleci.com/developer/orbs/orb/circleci/path-filtering
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/config.yml
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml

Deploy IRIS Application to Azure Using CircleCI
Published on InterSystems Developer Community (https://community.intersystems.com)

Then, open the CircleCI Projects page, choose your project, and click Set Up Project.

 Follow the provided recommendation and enable Setup Workflow (for more information, see Getting
started with dynamic config in CircleCI):

Now we’re ready to continue with the second file, continue.yml. Its structure is as follows:

Version indicates the CircleCI pipeline version.
Parameters is a variable to decide if Terraform should be running or not.
Orbs are parts of configuration created by others which we could reuse.
Executors are docker images with an Azure command line for some of our jobs.
Jobs are the actual deployment steps.
Workflows are logic to run a pipeline with or without Terraform.

The Jobs section contains the following jobs:

Build and push Docker image to ACR: This job runs inside a docker image with the az command-line
tool installed. It logs in to Azure and builds and pushes an image to the Azure Container Registry
(ACR).

Page 3 of 8

https://app.circleci.com/projects
https://circleci.com/docs/2.0/dynamic-config/#getting-started-with-dynamic-config-in-circleci
https://circleci.com/docs/2.0/dynamic-config/#getting-started-with-dynamic-config-in-circleci
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L1
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L3
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L8
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L13
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L18
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L94
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L18
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L19
https://azure.microsoft.com/en-us/services/container-registry/#features
https://azure.microsoft.com/en-us/services/container-registry/#features

Deploy IRIS Application to Azure Using CircleCI
Published on InterSystems Developer Community (https://community.intersystems.com)

Terraform: This job uses a Terraform orb and creates an infrastructure. See the section on
Terraform below for details.

Setup packages: This job installs an IRIS application and a couple of service applications. See the
Setup Packages section below for details.

Terraform
For infrastructure creation, we’re going to use an infrastructure as code approach and leverage the power
of Terraform. Terraform speaks with AKS using its Azure plugin. It’s handy to use an AKS Terraform module
 that plays as a wrapper and simplifies resource creation.

You can find an example of creating an AKS resource with Terraform in Creating a Kubernetes Cluster with
AKS and Terraform. Here, we enable Terraform to manage all resources for demo purposes and
simplicity, that is, assign an Owner role. Terraform as an application connects to Azure using Service
Principal. So, to be more accurate, we assign an owner role to Service Principal as described in Create
an Azure service principal with the Azure CLI.

Let’s run a couple of commands on a local machine. Save the Azure subscription ID in an environment
variable:

$ export AZ_SUBSCRIPTION_ID=$(az account show --query id --output tsv)

$ az ad sp create-for-

rbac -n "Terraform" --role="Owner" --scopes="/subscriptions/${AZ_SUBSCRIPTION_ID}"

…

{

 "appId": "<appId>",

 "displayName": "<displayName>",

 "name": "<name>",

 "password": "<password>",

 "tenant": "<tenant>"

}

You can later find appId and tenantId listing Service Principals and looking for the display name
Terraform:

$ az ad sp list --display-

name "Terraform" | jq '.[] | "AppId: \(.appId), TenantId: \(.appOwnerTenantId)"'

But you can’t see the password this way. If you forget your password, the only way is to reset credentials.

In a pipeline, for AKS creation, we use a publicly available Azure Terraform module and Terraform version
1.0.11.

Set the environment variables in the CircleCI project settings with the retrieved credentials that Terraform
uses for connections to Azure. Also, set the DOMAIN_NAME environment variable. This tutorial uses the
demo-iris.myardyas.club domain name, but you’ll use your registered domain name. We use this
variable in a pipeline to enable external access to the IRIS application. The mapping of CircleCI
variables with the az create-for-rbac command is as follows:

Page 4 of 8

https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L34
https://circleci.com/developer/orbs/orb/circleci/terraform
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L47
https://martinfowler.com/bliki/InfrastructureAsCode.html
https://www.terraform.io/
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs
https://registry.terraform.io/modules/Azure/aks/azurerm/latest
https://www.hashicorp.com/blog/kubernetes-cluster-with-aks-and-terraform
https://www.hashicorp.com/blog/kubernetes-cluster-with-aks-and-terraform
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest#6-reset-credentials
https://registry.terraform.io/modules/Azure/aks/azurerm/latest
https://circleci.com/docs/2.0/env-vars/#setting-an-environment-variable-in-a-project

Deploy IRIS Application to Azure Using CircleCI
Published on InterSystems Developer Community (https://community.intersystems.com)

ARM_CLIENT_ID: appId

ARM_CLIENT_SECRET: password

ARM_TENANT_ID: tenant

ARM_SUBSCRIPTION_ID: Value of environment variable AZ_SUBSCRIPTION_ID

DOMAIN_NAME: your domain name

 To enable the Terraform Remote state, we use Terraform state in Azure Storage. To achieve this, let’s run
these commands on a local machine.

$ export RESOURCE_GROUP_NAME=tfstate

$ export STORAGE_ACCOUNT_NAME=tfstate14112021 # Must be between 3 and 24 characters i

n length and use numbers and lower-case letters only

$ export CONTAINER_NAME=tfstate

Create resource group

$ az group create --name ${RESOURCE_GROUP_NAME} --location eastus

Create storage account

$ az storage account create --resource-group ${RESOURCE_GROUP_NAME} --name ${STORAGE_

ACCOUNT_NAME} --sku Standard_LRS --encryption-services blob

Enable versioning. Read more at https://docs.microsoft.com/en-

us/azure/storage/blobs/versioning-overview

$ az storage account blob-service-properties update --account-

name ${STORAGE_ACCOUNT_NAME} --enable-versioning true

Create blob container

$ az storage container create --name ${CONTAINER_NAME} --account-

name ${STORAGE_ACCOUNT_NAME}

The Terraform code we put in the Terraform directory. It's divided into three files:

provider.tf is to set the Azure plugin version and a path to remote storage for saving the Terraform
state.
variables.tf is input data for the Terraform module.
main.tf is the creation of the actual resources.

Page 5 of 8

https://www.terraform.io/docs/language/state/remote.html
https://docs.microsoft.com/en-us/azure/developer/terraform/store-state-in-azure-storage?tabs=azure-cli
https://github.com/myardyas/secured-rest-api/tree/master/terraform
https://github.com/myardyas/secured-rest-api/blob/master/terraform/provider.tf
https://github.com/myardyas/secured-rest-api/blob/master/terraform/variables.tf
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf

Deploy IRIS Application to Azure Using CircleCI
Published on InterSystems Developer Community (https://community.intersystems.com)

We create an Azure resource group, public IP, Azure container registry, and so on. For networking and
the Azure Kubernetes service, we leverage publicly available Terraform modules.

Setup Packages
What we’re going to install into the newly created AKS cluster is located in the helm directory. The
descriptive Helmfile approach enables us to define applications and their settings in the helmfile.yaml file.

Run the setup with the single command helmfile sync. The command installs an IRIS application and two
additional applications, cert-manager and ingress-nginx, allowing us to call an application from the
outside. For more information, see the releases section on GitHub.

We install the IRIS application using a Helm chart similar to that described in Automating GKE creation on
CircleCI builds. For simplicity, we use deployment. That means data doesn’t persist during the pod’s
restart. For persistence, you should use Statefulset or, better, Kubernetes IRIS Operator (IKO). You can find
an example of IKO deployment in the iris-k8s-monitoring repository.

Running the Pipeline
When you’ve added the .circleci/, terraform/ and helm/ directories, push them into GitHub:

$ git add .

$ git commit -m "Setup everything"

$ git push

If everything is okay, you see a screen in the CIrcleCI UI that’s similar to the following:

Setting the A-record in the Domain Registrar
One more thing is the creation of a binding by A-record between a public IP created in Azure by
Terraform and your domain name in your Domain Registrar console.

Let’s connect to a cluster:

$ az aks get-credentials --resource-group demo --name demo

Page 6 of 8

https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L1
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L50
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L42
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L7
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L18
https://github.com/myardyas/secured-rest-api/tree/master/helm
https://github.com/roboll/helmfile
https://github.com/myardyas/secured-rest-api/blob/master/helm/helmfile.yaml
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L92
https://github.com/myardyas/secured-rest-api/blob/master/helm/helmfile.yaml#L16
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_DEPLOYMENT_IKO
https://github.com/intersystems-community/iris-k8s-monitoring/blob/master/helmfile.yaml#L23
https://www.cloudflare.com/learning/dns/dns-records/dns-a-record/

Deploy IRIS Application to Azure Using CircleCI
Published on InterSystems Developer Community (https://community.intersystems.com)

Define a public IP-address exposed by ingress-nginx:

$ kubectl -n ingress-nginx get service ingress-nginx-

controller -ojsonpath='{.spec.loadBalancerIP}'

x.x.x.x

Set this IP in your domain registrar (GoDaddy, Route53, GoogleDomains, and so on) like this:

YOUR_DOMAIN_NAME = x.x.x.x

Now, wait for some time until the DNS change is propagated around the world and you can check the
result:

$ dig +short YOUR_DOMAIN_NAME

The response should be x.x.x.x.

Testing
Assuming that the domain name is demo-iris.myardyas.club, we can perform manual testing. Note that
we’ve used the letsencrypt staging issuer, so let's omit certificate checking here. In production, we should
replace the issuer with lets-encrypt-production here. Also, it’s worth setting your email here instead of
at example@gmail.com.

$ curl -sku Bill:ChangeMe https://demo-iris.myardyas.club/crudall/_spec | jq .

…

Create a person:

$ curl -ku John:ChangeMe -XPOST -H "Content-Type: application/json" https://demo-
iris.myardyas.club/crud/persons/ -d '{"Name":"John Doe"}'

Check to see if a person was created:

$ curl -sku Bill:ChangeMe https://demo-iris.myardyas.club/crud/persons/all | jq .

[

 {

 "Name": "John Doe"

 }

...

Conclusion
That’s it! You've seen how a Terraform and CircleCI workflow creates a Kubernetes cluster in an Azure
cloud. For our IRIS installation, we used the most straightforward Helm chart. For production, you should
extend this chart, at least deployment should be replaced by Statefulset, or you should use IKO.

Page 7 of 8

https://godaddy.com/
https://en.wikipedia.org/wiki/Amazon_Route_53
https://domains.google/
https://letsencrypt.org/docs/staging-environment/
https://github.com/myardyas/secured-rest-api/blob/master/helm/cert-manager/lets-encrypt-production.yaml
https://github.com/myardyas/secured-rest-api/blob/master/helm/iris/values.yaml#L30
https://github.com/myardyas/secured-rest-api/blob/master/helm/cert-manager/lets-encrypt-production.yaml#L7
mailto:example@gmail.com
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_DEPLOYMENT_IKO

Deploy IRIS Application to Azure Using CircleCI
Published on InterSystems Developer Community (https://community.intersystems.com)

Don’t forget to remove created resources when you no longer need them. Although Azure has a free tier
 and AKS is free, you pay for resources designed to run an AKS cluster.

#Azure #DevOps #Kubernetes #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/deploy-iris-application-azure-using-circleci

Page 8 of 8

https://azure.microsoft.com/en-us/free/?v=b&adobe_mc_sdid=SDID%3D5114C6DF115C70B5-7C5850BC2C2B8004%7CMCORGID%3DEA76ADE95776D2EC7F000101@AdobeOrg%7CTS%3D1634537943&adobe_mc_ref=https%3A%2F%2Fwww.google.com%2F
https://azure.microsoft.com/en-us/pricing/details/kubernetes-service/
https://community.intersystems.com/tags/azure
https://community.intersystems.com/tags/devops
https://community.intersystems.com/tags/kubernetes
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/deploy-iris-application-azure-using-circleci

