Deploy IRIS Application to Azure Using CircleCl
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Mikhail Khomenko - sans,2022 gm read

Deploy IRIS Application to Azure Using CircleCl

We've already considered how to run an IRIS-based application in GCP Kubernetes in Deploying
InterSystems IRIS Solution into GCP Kubernetes Cluster GKE Using CircleCl. Additionally, we've seen how to
run an IRIS-based application in AWS Kubernetes in Deploying a Simple IRIS-Based Web Application Using
Amazon EKS. Now, let's look at how to deploy an application to the Azure Kubernetes Service (AKS).

Azure

For this article, we’ll use an Azure free subscription. You can find pricing details on their pricing page.

After registration, you'll see the Microsoft Azure portal:

Il (7 PRy
<« C @& portalazure.com/ithome ® a v » @ (update 1)

= i [v] dl Search , jices, and di G > ol __ [
VSOV Il ® Upgrade [| © Search resources, services, and docs (G+/) & o & O & DEFAULT DIRECTORY @

Azure services

»a R o — =
+ P od [@ | %) — o RN
a'a A & = <
Create a Subscriptions Kubernetes Quickstart Virtual App Services Storage SQL databases ~ Azure Cosmos More services
resource services Center machines accounts
Navigate
1]
Subscriptions [#4] Resource groups EEE All resources Dashboard
Tools
m Microsoft Learn @ Azure Monitor G Security Center g Cost Management
J Learn Azure with free online Monitor your apps and Secure your apps and Analyze and optimize your

training from Microsoft infrastructure infrastructure cloud spend for free

The portal is handy, but we won't use it in this article. Instead, let’s install the Azure command-line interface
. The most recent version at the moment of writing is 2.30.0.

$ az version

{
"azure-cli": "2.30.0",
"azure-cli-core": "2.30.0",
"azure-cli-telenetry": "1.0.6",
"extensions": {}

}

Now let's log in to Azure:

$ az login

Page 1 of 8

https://community.intersystems.com/user/mikhail-khomenko
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://community.intersystems.com/post/deploying-simple-iris-based-web-application-using-amazon-eks
https://community.intersystems.com/post/deploying-simple-iris-based-web-application-using-amazon-eks
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/pricing/#product-pricing
https://portal.azure.com/#home
https://docs.microsoft.com/en-us/cli/azure/

Deploy IRIS Application to Azure Using CircleCl
Published on InterSystems Developer Community (https://community.intersystems.com)

CircleClI Pipeline

We’'re going to set up AKS and install an IRIS application using the power of CI/CD with CircleClI. This
means that we take a GitHub-based project, add a couple of pipeline files along with infrastructure as
code, push changes back to GitHub, and check the results in a friendly CircleCI UL.

With a GitHub account, it's effortless to create an integration with CircleCl. For more information, see this
article on Seamless integration with GitHub.

Let's take an updated version of the project we've already used in Deploying InterSystems IRIS Solution into
GCP Kubernetes Cluster GKE Using CircleCl— namely, secured-rest-api. Open it, click Use this Template,
and create a version in a new repository. We'll refer to code samples located there throughout this article.

Clone a repository locally and create a .circleci/ directory with a couple of files:

$ tree .circleci/
.circleci/

??? config.ym
??7? continue.yn

We use a dynamic configuration and path filtering to enable the pipeline to run as a whole or just its parts
depending on which files have changed. In our case, we run a Terraform job only when Terraform code
changes. The first file, config.yml, is simple. We call a second patrt, .circleci/continue.yml, and pass a
particular Boolean parameter if the Terraform code is up-to-date.

$ cat config.yn

version: 2.1

Enable CircleCl's dynanic configuration feature
setup: true

Enabl e pat h-based pi peline

or bs:
path-filtering: circleci/path-filtering@.1.0
wor kf | ows:
CGenerate dynani c configuration:
j obs:

- path-filtering/filter:
nane: Check updated files
config-path: .circleci/continue.ynl
base-revi sion: naster
mappi ng: |
terraform .* terraformjob true

Before discussing a second file, continue.yml, let's add this secured-rest-app project to CircleCl and push
updates with .circleci/config.yml to GitHub:

$ git add .circleci/config.ynl
$ git conmmit -m"Add circleci config.ym"
$ git push

Page 2 of 8

https://circleci.com/docs/
https://circleci.com/integrations/github/
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://community.intersystems.com/post/deploying-intersystems-iris-solution-gcp-kubernetes-cluster-gke-using-circleci
https://github.com/intersystems-community/secured-rest-api
https://github.com/myardyas/secured-rest-api
https://circleci.com/docs/2.0/configuration-cookbook/?section=examples-and-guides#dynamic-configuration
https://circleci.com/developer/orbs/orb/circleci/path-filtering
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/config.yml
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml

Deploy IRIS Application to Azure Using CircleCl
Published on InterSystems Developer Community (https://community.intersystems.com)

Then, open the CircleCl Projects page, choose your project, and click Set Up Project.

&« C @ appcircleci.com/projects/github/myardyas/setup/ L @‘fUpdate 5‘)‘
o) @ Mikhail > Welcome » myardyas >) Setup

Set up your code
Select the options that best describe you and your organization and we'll
help you get started.

@& select Project [F] secured-rest-api -

Q Select a config.yml file for secured-rest-api

Quickly get started with our Hello World config.ym!
and we'll commit to a new branch: circleci-
project-setup

0 If you already have .circleci/config.yml in your repo

P masterd

@ circleci/config.ym found on this branch

Set Up Project

Follow the provided recommendation and enable Setup Workflow (for more information, see Getting
started with dynamic config in CircleCl):

< C & appaircleci.com/pipelines/github/myardyas/secured-rest-api & % @ (vpdate 1)

myardyas Dashboard Project
Mikhal 85 AllPipelines > [f] secured-rest-api

a= .
Sojibastboad Wl secured-rest-ap| 21 Add team members ¢ Project Settings
Projects
Filters
Insights % Everyone's Pipelines v [] secured-rest-api - § All Branches - 7 - Auto-expand @D
Organization Settings
Pipeline Status Workflow Branch / Commit Start Duration Actions
Plan (UPGRADE
secured-rest-api | Use of setup workflows must be enabled in project settings (Project

settings > Advanced -> Dynamic config using setup workflows)

Can't find an organization?

[2 EditConfig
and

update access to the ones

b - ail ild Error F master mago s
you want. Failed Build E 5 9
72ae3bf
Jobs @ Build Error 1 s

Now we're ready to continue with the second file, continue.yml. Its structure is as follows:

* Version indicates the CircleCl pipeline version.

* Parameters is a variable to decide if Terraform should be running or not.

* Orbs are parts of configuration created by others which we could reuse.

* Executors are docker images with an Azure command line for some of our jobs.
* Jabs are the actual deployment steps.

* Workflows are logic to run a pipeline with or without Terraform.

The Jobs section contains the following jobs:
* Build and push Docker image to ACR: This job runs inside a docker image with the az command-line

tool installed. It logs in to Azure and builds and pushes an image to the Azure Container Registry
ACR).

Page 3 of 8

https://app.circleci.com/projects
https://circleci.com/docs/2.0/dynamic-config/#getting-started-with-dynamic-config-in-circleci
https://circleci.com/docs/2.0/dynamic-config/#getting-started-with-dynamic-config-in-circleci
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L1
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L3
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L8
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L13
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L18
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L94
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L18
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L19
https://azure.microsoft.com/en-us/services/container-registry/#features
https://azure.microsoft.com/en-us/services/container-registry/#features

Deploy IRIS Application to Azure Using CircleCl
Published on InterSystems Developer Community (https://community.intersystems.com)

* Terraform: This job uses a Terraform orb and creates an infrastructure. See the section on
Terraform below for details.

e Setup packages: This job installs an IRIS application and a couple of service applications. See the
Setup Packages section below for details.

Terraform

For infrastructure creation, we're going to use an infrastructure as code approach and leverage the power
of Terraform. Terraform speaks with AKS using its Azure plugin. It's handy to use an AKS Terraform module
that plays as a wrapper and simplifies resource creation.

You can find an example of creating an AKS resource with Terraform in Creating a Kubernetes Cluster with
AKS and Terraform. Here, we enable Terraform to manage all resources for demo purposes and
simplicity, that is, assign an Owner role. Terraform as an application connects to Azure using Service
Principal. So, to be more accurate, we assign an owner role to Service Principal as described in Create
an Azure service principal with the Azure CLI.

Let’s run a couple of commands on a local machine. Save the Azure subscription ID in an environment
variable:

$ export AZ SUBSCRI PTI ON | D=$(az account show --query id --output tsv)
$ az ad sp create-for-
rbac -n "Terraforni --role="Omner" --scopes="/subscriptions/${AZ_SUBSCRI PTION | D}"

{

"appl d": "<appld>",
"di spl ayNane": "<di spl ayNane>",
"nanme": "<nanme>",
"password": "<password>",
"tenant": "<tenant>"

}

You can later find appld and tenantld listing Service Principals and looking for the display name
Terraform:

$ az ad sp list --display-
nane "Terraform | jq '.[] | "Appld: \(.appld), Tenantld: \(.appOmnerTenantld)"'

But you can't see the password this way. If you forget your password, the only way is to reset credentials.

In a pipeline, for AKS creation, we use a publicly available Azure Terraform module and Terraform version
1.0.11.

Set the environment variables in the CircleCl project settings with the retrieved credentials that Terraform
uses for connections to Azure. Also, set the DOMAINNAME environment variable. This tutorial uses the
demo-iris.myardyas.club domain name, but you'll use your registered domain name. We use this
variable in a pipeline to enable external access to the IRIS application. The mapping of CircleCI
variables with the az create-for-rbac command is as follows:

Page 4 of 8

https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L34
https://circleci.com/developer/orbs/orb/circleci/terraform
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L47
https://martinfowler.com/bliki/InfrastructureAsCode.html
https://www.terraform.io/
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs
https://registry.terraform.io/modules/Azure/aks/azurerm/latest
https://www.hashicorp.com/blog/kubernetes-cluster-with-aks-and-terraform
https://www.hashicorp.com/blog/kubernetes-cluster-with-aks-and-terraform
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli
https://docs.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli?view=azure-cli-latest#6-reset-credentials
https://registry.terraform.io/modules/Azure/aks/azurerm/latest
https://circleci.com/docs/2.0/env-vars/#setting-an-environment-variable-in-a-project

Deploy IRIS Application to Azure Using CircleCl
Published on InterSystems Developer Community (https://community.intersystems.com)

ARM CLI ENT_I D: appld

ARM CLI ENT_SECRET: password

ARM TENANT_I D: tenant

ARM SUBSCRI PTION I D: Val ue of environnment variable AZ SUBSCRI PTION I D
DOVAI N_NAME: your domai n name

< Project Settings £t Organization Settings
my-objectscript-rest-docker-template
Overview Environment Variables
Advanced Environment variables let you add sensitive data (e.g. APl keys) to your jobs rather than
placing them in the repository. The value of the variables cannot be read or edited in the
Environment Variables app once they are set.
SSH Keys If you're looking to share environment variables across projects, try Contexts.
API Permissions
Jira Integration Name Value Import Variables
Slack Integration
ARM_CLIENT_ID xxxxa8f7 X
Status Badges
ARM_CLIENT_SECRET XXOXX374P X
Webhooks
ARM_SUBSCRIPTION_ID xxxx2b19 X
ARM_TENANT_ID XXXX2287 X
DOMAIN_NAME xooelub X

To enable the Terraform Remote state, we use Terraform state in Azure Storage. To achieve this, let’'s run
these commands on a local machine.

export RESOURCE _GROUP_NAME=t f st at e

export STORAGE ACCOUNT_NAME=t f st at e14112021 # Must be between 3 and 24 characters i
| ength and use nunbers and | ower-case letters only

export CONTAlI NER_NAME=t f st at e

¥ O ¥ ®w

+

Create resource group
$ az group create --nane ${ RESOURCE_GROUP_NAME} --1location eastus

Create storage account
$ az storage account create --resource-group ${ RESOURCE _GROUP_NAME} --nanme ${STORACE_
ACCOUNT_NAME} --sku Standard LRS --encryption-services bl ob

Enabl e versioning. Read nore at https://docs. nicrosoft.com en-
us/ azur e/ st or age/ bl obs/ ver si oni ng- over vi ew

$ az storage account bl ob-service-properties update --account-
name ${ STORAGE _ACCOUNT_NAME} - -enabl e-versioning true

Create bl ob container
$ az storage contai ner create --nanme ${CONTAI NER_NAME} --account -
nane ${ STORAGE_ACCOUNT _NANE}

The Terraform code we put in the Terraform directory. It's divided into three files:

* provider.tf is to set the Azure plugin version and a path to remote storage for saving the Terraform
state.

e variables.tf is input data for the Terraform module.

* main.tf is the creation of the actual resources.

Page 5 of 8

https://www.terraform.io/docs/language/state/remote.html
https://docs.microsoft.com/en-us/azure/developer/terraform/store-state-in-azure-storage?tabs=azure-cli
https://github.com/myardyas/secured-rest-api/tree/master/terraform
https://github.com/myardyas/secured-rest-api/blob/master/terraform/provider.tf
https://github.com/myardyas/secured-rest-api/blob/master/terraform/variables.tf
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf

Deploy IRIS Application to Azure Using CircleCl
Published on InterSystems Developer Community (https://community.intersystems.com)

We create an Azure resource group, public IP, Azure container registry, and so on. For networking and
the Azure Kubernetes service, we leverage publicly available Terraform modules.

Setup Packages

What we're going to install into the newly created AKS cluster is located in the helm directory. The
descriptive Helmfile approach enables us to define applications and their settings in the helmfile.yaml file.

Run the setup with the single command helmfile sync. The command installs an IRIS application and two
additional applications, cert-manager and ingress-nginx, allowing us to call an application from the
outside. For more information, see the releases section on GitHub.

We install the IRIS application using a Helm chart similar to that described in Automating GKE creation on
CircleCl builds. For simplicity, we use deployment. That means data doesn’t persist during the pod’s
restart. For persistence, you should use Statefulset or, better, Kubernetes IRIS Operator (IKO). You can find
an example of IKO deployment in the iris-k8s-monitoring repository.

Running the Pipeline

When you've added the .circleci/, terraform/ and helm/ directories, push them into GitHub:

$ git add .
$ git conmit -m"Setup everything"
$ git push

If everything is okay, you see a screen in the ClrcleCl Ul that's similar to the following:

LVELCE Dashboard
Mikhail

85 All Pipelines

a= . .
&5 Dashboard 25 All Pipelines
Projects
& Everyone's Pipelines = [| All Projects - v - Auto-expand o
Insights
Pipeline Status Workflow Branch / Commit start Duration Actions
Organization Settings
secured-rest-api 17 - Setup infrastructure and packages i'E master 11hago 5m19s O @ -
[ip— 5d89aae Setup
Jobs @ Terraform 39 59s
Can't find an @ Build and push Docker image to ACR 40 3m2s
organization? @ Setup packages 41 1m 8s
and
update access to the ones - Generate dynamic configuration A1 i'E master 11h ago s C @ e
S 5d89aae Setup
Jobs @ Check updated files 38

Setting the A-record in the Domain Registrar

One more thing is the creation of a binding by A-record between a public IP created in Azure by
Terraform and your domain name in your Domain Registrar console.

Let’'s connect to a cluster:

$ az aks get-credentials --resource-group deno --nane deno

Page 6 of 8

https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L1
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L50
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L42
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L7
https://github.com/myardyas/secured-rest-api/blob/master/terraform/main.tf#L18
https://github.com/myardyas/secured-rest-api/tree/master/helm
https://github.com/roboll/helmfile
https://github.com/myardyas/secured-rest-api/blob/master/helm/helmfile.yaml
https://github.com/myardyas/secured-rest-api/blob/master/.circleci/continue.yml#L92
https://github.com/myardyas/secured-rest-api/blob/master/helm/helmfile.yaml#L16
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://community.intersystems.com/post/automating-gke-creation-circleci-builds
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_DEPLOYMENT_IKO
https://github.com/intersystems-community/iris-k8s-monitoring/blob/master/helmfile.yaml#L23
https://www.cloudflare.com/learning/dns/dns-records/dns-a-record/

Deploy IRIS Application to Azure Using CircleCl
Published on InterSystems Developer Community (https://community.intersystems.com)

Define a public IP-address exposed by ingress-nginx:

$ kubect!l -n ingress-nginx get service ingress-nginx-
control l er -ojsonpath="{.spec.|oadBal ancerl P}’
X. X. X. X

Set this IP in your domain registrar (GoDaddy, Route53, GoogleDomains, and so on) like this:

YOUR_DOVAI N_NAME = X. X. X. X

Now, wait for some time until the DNS change is propagated around the world and you can check the
result:

$ dig +short YOUR DOVAI N NAVE

The response should be x.x.X.x.

Testing

Assuming that the domain name is demo-iris.myardyas.club, we can perform manual testing. Note that
we’ve used the letsencrypt staging issuer, so let's omit certificate checking here. In production, we should
replace the issuer with lets-encrypt-production here. Also, it's worth setting your email here instead of

at example@gmail.com.

$ curl -sku Bill:ChangeMe https://denp-iris.nyardyas.club/crudall/_spec | jq .

Create a person:

$ curl -ku John: ChangeMe - XPOST -H "Content-Type: application/json" https://denp-
i ris.nyardyas. club/crud/persons/ -d '{"Nane":"John Doe"}"'

Check to see if a person was created:

$ curl -sku Bill:ChangeMe https://deno-iris.nyardyas.club/crud/persons/all | jq .

[
{
"Nane": "John Doe"

}

Conclusion

That's it! You've seen how a Terraform and CircleCI workflow creates a Kubernetes cluster in an Azure
cloud. For our IRIS installation, we used the most straightforward Helm chart. For production, you should
extend this chart, at least deployment should be replaced by Statefulset, or you should use IKO.

Page 7 of 8

https://godaddy.com/
https://en.wikipedia.org/wiki/Amazon_Route_53
https://domains.google/
https://letsencrypt.org/docs/staging-environment/
https://github.com/myardyas/secured-rest-api/blob/master/helm/cert-manager/lets-encrypt-production.yaml
https://github.com/myardyas/secured-rest-api/blob/master/helm/iris/values.yaml#L30
https://github.com/myardyas/secured-rest-api/blob/master/helm/cert-manager/lets-encrypt-production.yaml#L7
mailto:example@gmail.com
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=PAGE_DEPLOYMENT_IKO

Deploy IRIS Application to Azure Using CircleCl
Published on InterSystems Developer Community (https://community.intersystems.com)

Don't forget to remove created resources when you no longer need them. Although Azure has a free tier
and AKS is free, you pay for resources designed to run an AKS cluster.

#Azure #DevOps #Kubernetes #InterSystems IRIS

Source URL:https://community.intersystems.com/post/deploy-iris-application-azure-using-circleci

Page 8 of 8

https://azure.microsoft.com/en-us/free/?v=b&adobe_mc_sdid=SDID%3D5114C6DF115C70B5-7C5850BC2C2B8004%7CMCORGID%3DEA76ADE95776D2EC7F000101@AdobeOrg%7CTS%3D1634537943&adobe_mc_ref=https%3A%2F%2Fwww.google.com%2F
https://azure.microsoft.com/en-us/pricing/details/kubernetes-service/
https://community.intersystems.com/tags/azure
https://community.intersystems.com/tags/devops
https://community.intersystems.com/tags/kubernetes
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/deploy-iris-application-azure-using-circleci

