
Implementing an IMAP Client in InterSystems IRIS - part II
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 José Pereira · Sep 15, 2021 10m read

Implementing an IMAP Client in InterSystems IRIS - part II
In the first part we got a quick introduction on the IMAP protocol commands, now it's time to use IRIS
and implement them and create our own IMAP client!

IRIS Email Framework
The IRIS platform has default interfaces and classes for working with email. Developers originally
designed those artifacts for POP3 implementation. However, this doesn’t mean that we can’t use and
extend these interfaces and classes to implement an IMAP client. So let’s talk about them:

%Net.FetchMailProtocol: This is the base class for email retrieval. The IMAP client extends it.
%Net.MailMessage: This is the MIME message. It extends %Net.MailMessagePart.
%Net.MailMessagePart: This encapsulates a MIME message part for multipart messages. This
class has an array for itself, enabling a tree representation of message subparts.
%Net.MIMEReader: This utility class has methods to parse a message’s MIME content,
generating a %Net.MIMEPart instance.
%Net.MIMEPart: This encapsulates the message’s MIME parts and provides methods to get
information about them.

Implementing an IMAP Client
In this section, we present implementation details about an IMAP client, an inbound interoperability
adapter, and a simple production example. Note that, in favor of saving space, we won’t show most
implementation methods. Instead, we link to each one’s full implementation details. You can find the
complete source code on GitHub.

Creating a Basic IMAP Client
As we discussed before, IMAP is a plain text-based protocol over TCP. This means the base code to
implement a client for such a protocol is a TCP client.

The IRIS platform provides standard ObjectScript commands to perform I/O operations: OPEN, USE,
READ, WRITE, and CLOSE.

Here is a simple example of how to connect to the MS Outlook server, log in, then log out:

ClassMethod SimpleTest()

{

 // connection configuration

 SET dev = "|TCP|993"

 SET host = "outlook.office365.com"

Page 1 of 6

https://community.intersystems.com/user/jos%C3%A9-pereira
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=GIOD_IODEVCOMMS

Implementing an IMAP Client in InterSystems IRIS - part II
Published on InterSystems Developer Community (https://community.intersystems.com)

 SET port = "993"

 SET mode = "C"

 SET sslConfig = "ISC.FeatureTracker.SSL.Config"

 SET timeout = 30

 // connection to MS Outlook IMAP server

 OPEN dev:(host:port:mode:/TLS=sslConfig):timeout

 THROW:('$TEST) ##class(%Exception.General).%New("Sorry, can't connect...")

 USE dev

 READ resp($INCREMENT(resp)):timeout

 WRITE "TAG1 LOGIN user@outlook.com password", !

 READ resp($INCREMENT(resp)):timeout

 WRITE "TAG2 LOGOUT", !

 READ resp($INCREMENT(resp)):timeout

 CLOSE dev

 // come back to default device (terminal) and prints responses

 USE 0

 ZWRITE resp

}

This is its output:

USER>d ##class(dc.Demo.Test).SimpleTest()

resp=3

resp(1)="* OK The Microsoft Exchange IMAP4 service is ready. [QwBQ..AA==]"_$c(13,10)

resp(2)="TAG1 OK LOGIN completed."_$c(13,10)

resp(3)="* BYE Microsoft Exchange Server IMAP4 server signing off."_$c(13,10)_"TAG2 O

K LOGOUT completed."_$c(13,10)

There are some highlights in this code:

We set the mode variable to C, which is carriage return mode. This setting is mandatory for IMAP.
The flag /TLS establishes a secure layer of communication (SSL). We must set this flag value to a
valid SSL IRIS connection.
The OPEN command initiates the connection.
The special boolean variable $TEST returns 1 when a command with a timeout is successful
or 0 if the timeout expires. In this example, if the OPEN command exceeds 30 seconds, the code
throws an exception.
After a connection is established successfully, the command USE owns the TCP device,
redirecting all READ and WRITE commands to this device.
The WRITE command issues commands to the IMAP server, and the READ command gets their
output.
To finish the connection, we must use the CLOSE command.
After owning the device, all calls to READ and WRITE commands execute on the device specified
in the dev variable, after using the USE dev command. To come back to the terminal and write to
it again, you need to issue a USE 0 command first.

Each READ command has a limited buffer to store the server response. When the response size
exceeds this limit, you need to issue another READ command to read the complete response. Of course,
it’s possible to increase the buffer size, but a better approach is to be ready to deal with such a situation.

As we discussed before, IMAP requires a tag for each command. This tag is helpful to check if the code
retrieved the complete response or if it needs to issue another READ command. In this case, we

Page 2 of 6

Implementing an IMAP Client in InterSystems IRIS - part II
Published on InterSystems Developer Community (https://community.intersystems.com)

implement the ReadResponse method to ensure the code reads the whole message.

Implementing the %Net.FetchMailProtocol Interface for IMAP
The %Net.FetchMailProtocol abstract class abstracts email retrieval on the IRIS platform. We implement
the following methods:

Connect: This establishes a connection to the IMAP server and logs in a user.
GetMailBoxStatus: This gets the size of the mailbox and how many messages are in it.
GetSizeOfMessages: This gets the size of one or all messages identified by a message number.
GetMessageUIDArray: This gets an array with one or all message UIDs in the inbox.
GetMessageUID: This gets the UID corresponding to a message number.
Fetch: This retrieves a message’s content, possibly multipart content, identified by a message
number. It retrieves the message content encapsulated in a %Net.MailMessage object.
FetchFromStream: This is the same as Fetch, but gets content from an encapsulated EML
message content in a %BinaryStream object, instead of calling the IMAP server.
FetchMessage: This is the same as Fetch, but returns specific message headers
in ByRef variables.
FetchMessageInfo: This retrieves only message headers and the text of the message.
DeleteMessage: This adds a message to the deletion array.
RollbackDeletes: This cleans up the deletion array.
QuitAndCommit: This deletes all messages in the deletion array and disconnects from the IMAP
server.
QuitAndRollback: This cleans up the deletion array and disconnects from the IMAP server.
Ping: This pings the IMAP server to keep the session alive.

First, we create a new class to implement the interface: dc.Demo.IMAP. This class inherits several
properties, which we must set to establish a connection to the IMAP server.

We create a helper class as well: dc.Demo.IMAPHelper. This class parses methods for IMAP responses,
gets all parts of a multipart message, and stores peripheral features, including a method to send
commands and ensure the entire response is read.

The first method we implement is the Connect method. This method establishes a connection to the
IMAP server using the configuration encapsulated in the class properties. It issues a login as well. This
method uses the IRIS platform’s OPEN command to establish the connection to the IMAP server and the
IMAP command LOGIN to authenticate to the server.

The next method we implement is GetMailBoxStatus. This method uses the SELECT command to select a
mailbox and it brings some additional information as well, like how many messages are in the mailbox.

IMAP doesn’t have a ready-to-use command to get the size of all messages. Of course, it’s possible to
iterate through all messages and sum their sizes. However, this strategy will probably cause slowness
issues. So in this implementation, we don’t retrieve the size for all messages.

The next method is GetSizeOfMessages. This method gets the size of one or more messages in the inbox.
When no message number is defined, this method throws an exception due to the same IMAP limitation
we explained for the GetMailBoxStatus method. We use the IMAP command FETCH <message_number>
(RFC822.SIZE) to retrieve a message size by its number.

The GetMessageUIDArray method comes next, which uses the IMAP commands SELECT and UID
SEARCH [ALL | <message_number>] and parses its response to get the UID array.

Page 3 of 6

https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAPHelper.cls#L77
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L1
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAPHelper.cls#L2
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L63
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L116
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L150
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L116
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L208

Implementing an IMAP Client in InterSystems IRIS - part II
Published on InterSystems Developer Community (https://community.intersystems.com)

The next method is GetMessageUID. This method gets a UID for a defined message number and uses
the same logic as the GetMessageUIDArray method.

Following this is the Fetch method. It uses the IMAP commands SELECT and FETCH
<message_number> BODY to retrieve message content, which is coded in MIME format. Fortunately, the
IRIS platform has a reader for MIME content, the %Net.MIMEReader class. This class gets the message
in a stream and returns the parsed message in a %Net.MIMEPart object.

After getting the MIME content, the method creates a %Net.MailMessage object, fills it with data from
the %Net.MIMEPart object, and returns it.

The MIME content is encapsulated in a %Net.MIMEPart object that maps into
a %Net.MailMessagePart object through the GetMailMessageParts method in
the dc.Demo.IMAPHelper class.

The next method is FetchFromStream. This method receives a stream object with an EML message and
converts it to a %Net.MailMessage object. This method does not retrieve content from the server.

Following are the FetchMessage and FetchMessageInfo methods, which are special cases of
the Fetch method.

The DeleteMessage method marks a message for deletion, whereas the RollbackDeletes method just
cleans up the array of messages marked for deletion.

Next is the QuitAndCommit method. It disconnects from the IMAP server and calls the
method CommitMarkedAsDeleted for message deletion.

The method QuitAndRollback just disconnects from the IMAP server and cleans up the array of messages
marked for deletion.

The last method, Ping, issues a NOOP command to keep the IMAP session alive.

Implementing an Inbound Interoperability Adapter for IMAP
The base class for email interoperability inbound in the IRIS platform is EnsLib.EMail.InboundAdapter.
This inbound adaptor requires these configurations:

The email server host address
The email server port
A credential ID which stores the username and password for accessing the server
An SSL configuration

This class was extended to create a new IMAP inbound adapter class: dc.Demo.IMAPInboundAdapter.

To use this new adapter, we set which mailbox to use in the Mailbox production parameter. Its default
value is INBOX.

The implementation is simple, it just overrides the MailServer property and sets its type
to dc.Demo.POP3ToIMAPAdapter IMAP client. This adapter maps the POP3 flow to the IMAP one, as the
base adapter class was designed for POP3 commands.

Page 4 of 6

https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L268
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L208
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L294
https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAPHelper.cls#L172
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAPHelper.cls#L2
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L361
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L424
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L461
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L512
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L526
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L542
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L595
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/main/src/dc/Demo/imap/IMAP.cls#L552
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L581
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAPInboundAdapter.cls#L2
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/POP3ToIMAPAdapter.cls#L5

Implementing an IMAP Client in InterSystems IRIS - part II
Published on InterSystems Developer Community (https://community.intersystems.com)

Thus, this POP3 to IMAP adapter enables us to perform all the original inbound adapter logic using
IMAP commands instead of POP3 commands.

In the dc.Demo.POP3ToIMAPAdapter class, we use the IMAP client IMAPClient of type dc.Demo.IMAP as a
proxy for server communication. However, as dc.Demo.POP3ToIMAPAdapter extends %Net.POP3, it must
override all abstract methods in %Net.FetchMailProtocol.

Also, we had to implement new methods that the %Net.POP3 client had implemented
directly: ConnectPort and FetchMessageHeaders. In the same way, we
created ConnectedGet and SSLConfigurationSet methods to set and get properties that %New.POP3 also
implemented directly.

Setting up a Simple Production
To make all these classes work together, we set up a simple production. Check out Creating a Production
 to get more information about IRIS Interoperability productions.

This production includes a business service and a business operation, which uses the IMAP inbound
adapter to check for new messages. This code was inspired by
the Demo.Loan.FindRateProduction interoperability sample.

In short, this production:

Uses the GetMessageUIDArray method to get all available messages in the configured mailbox
Loops over them, tracing their output, fetched by the Fetch method
Checks if each message subject matches a criterion ̶ starting with "[IMAP test]"
Responds to the sender if the message subject matches the criteria, otherwise ignores the
message
Deletes all of the messages so that it won’t analyze them again

In this example, we configure an IMAP server from Yahoo Mail imap.mail.yahoo.com, on port 993. We
also use the default IRIS SSL configuration “ISC FeatureTacker.SSL.Config”.

Next, we configure a credential called imap-test containing a username and password, as follows:

As the image below shows, the production starts and keeps querying the IMAP server for new
messages. When there are new messages, the inbound adapter grabs their information, like the header
and subject, and lets production take further action based on this information.

In this example, the production checks if the message subject starts with "[IMAP test]" and sends back a
message to the sender.

When a message doesn’t match the criteria, production just ignores it.

Page 5 of 6

https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/POP3ToIMAPAdapter.cls#L5
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L4
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/POP3ToIMAPAdapter.cls#L5
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/POP3ToIMAPAdapter.cls#L47
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/POP3ToIMAPAdapter.cls#L54
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/POP3ToIMAPAdapter.cls#L25
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/POP3ToIMAPAdapter.cls#L31
https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=ECONFIG_PRODUCTION
https://github.com/jrpereirajr/iris-imap-inbound-adapter/blob/eb0218fbe46893f8e49d43f7d2612deab0d642f6/src/dc/Demo/IMAPTestService.cls#L1
https://github.com/jrpereirajr/iris-imap-inbound-adapter/blob/eb0218fbe46893f8e49d43f7d2612deab0d642f6/src/dc/Demo/IMAPTestSendEmailOperation.cls#L1
https://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?&LIBRARY=ENSDEMO&PRIVATE=1&CLASSNAME=Demo.Loan.FindRateProduction
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L208
https://github.com/jrpereirajr/iris-imap-inbound-adapter-demo/blob/c477d3b37b2ff63824ab66bebb61d18017d449db/src/dc/Demo/imap/IMAP.cls#L294

Implementing an IMAP Client in InterSystems IRIS - part II
Published on InterSystems Developer Community (https://community.intersystems.com)

Conclusion
In this article, we discussed an IMAP client implementation. First, we explored some essential
background on IMAP and its main commands. Then, we detailed the implementation, covering the client
itself and how to connect it to the IRIS platform. We also presented an extension to the default
interoperability adapter to use IMAP, and a simple production example.

Now that you know more about IMAP and its settings and you know how to connect it to IRIS, you can
set up email capabilities in your applications. To learn more about the IMAP topics we discussed here,
explore the resources below.

Resources
Atmail’s IMAP 101: Manual IMAP Sessions
Fastmail’s Why is IMAP better than POP?
IETF’s Internet Message Access Protocol
IETF’s Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies
InterSystems’ I/O Devices and Commands
InterSystems’ Using the Email Inbound Adapter
Nylas’ Everything you need to know about IMAP

#InterSystems IRIS

 Source URL:https://community.intersystems.com/post/implementing-imap-client-intersystems-iris-part-ii

Page 6 of 6

https://www.atmail.com/blog/imap-101-manual-imap-sessions/
https://www.fastmail.help/hc/en-us/articles/360060591353-Why-is-IMAP-better-than-POP-
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc2045
https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=GIOD_iodevcomms
https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=EEMA_inbound
https://www.nylas.com/blog/nylas-imap-therefore-i-am/
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/implementing-imap-client-intersystems-iris-part-ii

