
Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Iryna Mykhailova · Aug 21, 2021 9m read
 Open Exchange

Transferring Files via REST to Store in a Property, Part 3
The first installment of this article series discussed how to read a big chunk of data from the raw body of an HTTP
POST method and save it to a database as a stream property of a class. The second installment discussed how
to send files and their names wrapped in a JSON format.

Now let’s look closer at the idea of sending large files in parts to the server. There are several approaches we can
use to do this. This article discusses using the Transfer-Encoding header to indicate chunked transfer.
The HTTP/1.1 specification introduced the Transfer-Encoding header, and the RFC 7230 section 4.1
 described it, but it’s absent from the HTTP/2 specification.

Transfer-Encoding Header
The objective of the Transfer-Encoding header is to specify the form of encoding used to transfer the payload body
to the user safely. You use this header primarily to delimit a dynamically generated payload accurately and to
distinguish payload encodings for transport efficiency or security from the characteristics of the selected resource.

You can use the following values in this header:

Chunked
Compress
Deflate
gzip

Transfer-Encoding Equals Chunked
When you set transfer encoding to chunked, the body of the message will consist of an unspecified number
of regular chunks, a terminating chunk, a trailer part, and a final carriage return line feed (CRLF) sequence.

Each part starts with a chunk size represented by a hexadecimal number followed by an optional extension and
CRLF. After that comes the body of the chunk with CRLF at the end of it. The extensions contain the metadata of
the chunk. For example, metadata could include a signature, a hash, mid-message control information, and so on.
The terminating chunk is a regular chunk with zero length. A trailer, which consists of (possibly empty) header
fields, follows the terminating chunk.

To make it all easier to imagine, here is the structure of a message with Transfer-Encoding = chunked:

Page 1 of 11

https://community.intersystems.com/user/iryna-mykhailova
https://openexchange.intersystems.com/package/RESTFileTransfer
https://openexchange.intersystems.com/package/RESTFileTransfer
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

An example of a short, chunked message looks like this:

13\r\n
Transferring Files \r\n
4\r\n
on\r\n
1A\r\n
community.intersystems.com
0\r\n
\r\n

This message body consists of three meaningful chunks. The first chunk has a length of nineteen octets, the
second has four, and the third has twenty-six. You can see that the trailing CRLFs that mark the ends of the chunks
don’t count toward the chunk size. But, if you use CRLF as the end of line (EOL) marker, then the CRLF does
count as a part of a message and takes two octets. The decoded message looks like this:

Transferring Files on
community.intersystems.com

Forming Chunked Messages in IRIS
For this tutorial, we’ll use the method on the server created in the first article. This means that we are going to send
the contents of the file directly to the body of the POST method. Since we are sending the contents of the file in the
body, we send the POST to http://webserver/RestTransfer/file.

Now, let's look at how we can form a chunked message in IRIS. As specified in Sending HTTP Requests, under the
section Sending a Chunked Request, you can send an HTTP request in chunks if you are using HTTP/1.1. The
best part of this process is that %Net.HttpRequest automatically computes the content length of the entire message
body on the server side so there is no need to change server side at all. Therefore, to send a chunked request, you
need to follow these steps in the client only.

The first step is to create a subclass of %Net.ChunkedWriter and implement the OutputStream method. This
method should get a stream of data, examine it, decide whether to split it into parts or not, how to split it, and

Page 2 of 11

http://webserver/RestTransfer/file
https://docs.intersystems.com/irislatest/csp/docbook/Doc.View.cls?KEY=GNET_http#GNET_http_entitybody_chunking
https://docs.intersystems.com/irislatest/csp/documatic/%25CSP.Documatic.cls?LIBRARY=%25SYS&CLASSNAME=%25Net.HttpRequest

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

invoke the inherited methods of the class to write the output. In our case, we’ll call the
class RestTransfer.ChunkedWriter.

Next, in the client-side method responsible for sending data (called “SendFileChunked” here), you must create an
instance of RestTransfer.ChunkedWriter class and fill it with the requested data you want to send. Since we are
sending files, we’ll do all the heavy lifting in the RestTransfer.ChunkedWriter class. We add a property
named Filename As %String and a parameter named “MAXSIZEOFCHUNK = 10000.” Of course, you can decide
to set a maximum allowed size for the chunk as a property and set it for each file or message.

Finally, set the EntityBody property of %Net.HttpRequest to be equal to the created instance of
the RestTransfer.ChunkedWriter class and you’re good to go.

These steps are just the new code you must write and replace in your existing method that sends files to a server.

The method looks like this:

ClassMethod SendFileChunked(aFileName) As %Status
{
 Set sc = $$$OK
 Set request = ..GetLink()
 set cw = ##class(RestTransfer.ChunkedWriter).%New()
 set cw.Filename = aFileName
 set request.EntityBody = cw
 set sc = request.Post("/RestTransfer/file")
 Quit:$System.Status.IsError(sc) sc
 Set response=request.HttpResponse
 do response.OutputToDevice()
 Quit sc
}

The %Net.ChunkedWriter class is an abstract stream class that provides an interface and has some implemented
methods and properties. Here, we use the following property and methods:

Property TranslateTable as %String forces automatic translation of the chunks when writing them into the
output stream (EntityBody). We expect to receive raw data, so we must set TranslateTable to “RAW”.
Method OutputStream is an abstract method overridden by a subclass to do all the chunking.

Method WriteSingleChunk(buffer As %String) writes the Content-Length HTTP header followed by the entity-
body as a single chunk. We check to see if the size of the file is smaller than
the MAXSIZEOFCHUNK method, in which case, we use this method.
Method WriteFirstChunk(buffer As %String) writes the Transfer-Encoding header followed by the first
chunk. It should always be present. Zero or more calls to write more chunks may follow it, a compulsory call
to write the last chunk with the empty string follows. We check that the length of the file is greater than
the MAXSIZEOFCHUNK method and call this method.
Method WriteChunk(buffer As %String) writes consequent chunks. Check to see if the rest of the file after
the first chunk is still greater than MAXSIZEOFCHUNK then use this method to send data. We keep doing it
until the size of the last part of the file is less than MAXSIZEOFCHUNK.
Method WriteLastChunk(buffer As %String) writes the last chunk followed by a zero-length chunk to mark
the end of the data.

Based on everything above, our class RestTransfer.ChunkedWriter looks like this:

Class RestTransfer.ChunkedWriter Extends %Net.ChunkedWriter
{
 Parameter MAXSIZEOFCHUNK = 10000;
 Property Filename As %String;

Page 3 of 11

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 Method OutputStream()
 {
 set ..TranslateTable = "RAW"
 set cTime = $zdatetime($Now(), 8, 1)
 set fStream = ##class(%Stream.FileBinary).%New()
 set fStream.Filename = ..Filename
 set size = fStream.Size
 if size < ..#MAXSIZEOFCHUNK {
 set buf = fStream.Read(.size, .st)
 if $$$ISERR(st)
 {
 THROW st
 } else {
 set ^log(cTime, ..Filename) = size
 do ..WriteSingleChunk(buf)
 }
 } else {
 set ^log(cTime, ..Filename, 0) = size
 set len = ..#MAXSIZEOFCHUNK
 set buf = fStream.Read(.len, .st)
 if $$$ISERR(st)
 {
 THROW st
 } else {
 set ^log(cTime, ..Filename, 1) = len
 do ..WriteFirstChunk(buf)
 }
 set i = 2
 While 'fStream.AtEnd {
 set len = ..#MAXSIZEOFCHUNK
 set temp = fStream.Read(.len, .sc)
 if len<..#MAXSIZEOFCHUNK
 {
 do ..WriteLastChunk(temp)
 } else {
 do ..WriteChunk(temp)
 }
 set ^log(cTime, ..Filename, i) = len
 set i = $increment(i)
 }
 }
 }
}

To see how these methods split the file into parts, we add a global ^log with the following structure:

//for transfer in a single chunk
^log(time, filename) = size_of_the_file
//for transfer in several chunks
^log(time, filename, 0) = size_of_the_file
^log(time, filename, idx) = size_of_the_idx’s_chunk

Now that the programming is complete, let’s see how all three approaches work for different files. We write a simple
class method to make calls to the server:

ClassMethod Run()
{

Page 4 of 11

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 // First, I am deleting globals.
 kill ^RestTransfer.FileDescD
 kill ^RestTransfer.FileDescS
 // Then I form a list of files I want to send
 for filename = "D:\Downloads\wiresharkOutput.txt", // 856 bytes
 "D:\Downloads\wiresharkOutput.pdf", // 60 134 bytes
 "D:\Downloads\Wireshark-win64-3.4.7.exe", // 71 354 272 bytes
 "D:\Downloads\IRIS_Community-2021.1.0.215.0-win_x64.exe" //542 370 224 bytes
 {
 write !, !, filename, !, !
 // And call all three methods of sending data to server side.
 set resp1=##class(RestTransfer.Client).SendFileChunked(filename)
 if $$$ISERR(resp1) do $System.OBJ.DisplayError(resp1)
 set resp1=##class(RestTransfer.Client).SendFile(filename)
 if $$$ISERR(resp1) do $System.OBJ.DisplayError(resp1)
 set resp1=##class(RestTransfer.Client).SendFileDirect(filename)
 if $$$ISERR(resp1) do $System.OBJ.DisplayError(resp1)
 }
}

After running the class method Run, in the output for the first three files, the status was okay. But for the last file,
while the first and last calls worked, the middle one returned an error: 5922, Timed out waiting for response. If we
look in our globals method, we see that the code didn’t save the eleventh file. This means
that ##class(RestTransfer.Client).SendFile(filename) failed ̶ or to be precise, the method that unwraps data from
JSON didn’t succeed.

Now, if we look at our streams, we see that all the successfully saved files have the correct sizes.

Page 5 of 11

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 6 of 11

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

If we look at the ^log global, we see how many chunks the code created for each file:

Page 7 of 11

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

You’d probably like to see the bodies of the actual messages. Eduard Lebedyuk suggested in the article Debugging
Web that it’s possible to use CSP Gateway Logging and Tracing.

If we look in the Event Log for the second chunked file, we see that the value of the Transfer-Encoding header is
indeed “chunked.” Unfortunately, the server has already glued the message together, so we don’t see the actual
chunking.

Using the Trace feature doesn’t show a lot more information, but it clarifies that there is a gap between the
penultimate and the last request.

Page 8 of 11

https://community.intersystems.com/post/debugging-web-part-2
https://community.intersystems.com/post/debugging-web-part-2

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

To see the actual parts of the messages, we copy the client to another computer to use a network sniffer. Here
we’ve chosen to use Wireshark because it is free and it has the necessary functions. To better show you how the
code splits the file into chunks, we can change the value of MAXSIZEOFCHUNK to 100 and chose to send a small
file. So now, we can see the following result:

Page 9 of 11

https://www.wireshark.org/download.html

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

We see that the lengths of all but the last two chunks equal 64 in HEX (100 in DEC), the final chunk with data
equals 21 DEC (15 in HEX), and we can see the size of the last chunk is zero. Everything looks OK and accords
with the specification. The overall length of the file equals 421 (4x100+1x21), which we can also see in globals:

Page 10 of 11

Transferring Files via REST to Store in a Property, Part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Wrapping Up
Overall, we can see that this approach works and enables sending large files without problems to the server.
Additionally, if you’re sending large amounts of data to a client, you might want to familiarize yourself with the Web
Gateway Operation and Configuration, section Application Path Configuration Parameters, parameter Response
Size Notification. It specifies Web Gateway behavior when sending large amounts of data depending on the
version of HTTP used.

The code for this approach is added to the previous version of this example on GitHub and InterSystems Open
Exchange.

While on the topic of sending files in chunks, it is also possible to use the Content-Range header with or without
the Transfer-Encoding header to indicate which exact part of the data is being transferred. Furthermore, you can
use a completely new concept of streams available with the HTTP/2 specification.

As always, if you have any questions or suggestions, please don’t hesitate to write them in the comments section.

#REST API #InterSystems IRIS
Check the related application on InterSystems Open Exchange

 Source URL:https://community.intersystems.com/post/transferring-files-rest-store-property-part-3

Page 11 of 11

https://docs.intersystems.com/irisforhealthlatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_OPER_CONFIG
https://docs.intersystems.com/irisforhealthlatest/csp/docbook/DocBook.UI.Page.cls?KEY=GCGI_OPER_CONFIG
https://github.com/Gra-ach/RESTFileTransfer
https://openexchange.intersystems.com/package/RESTFileTransfer
https://openexchange.intersystems.com/package/RESTFileTransfer
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/intersystems-iris
https://openexchange.intersystems.com/package/RESTFileTransfer
https://community.intersystems.com/post/transferring-files-rest-store-property-part-3

