
Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Nigel Salm · Aug 18, 2021 15m read

Why I love ObjectScript and why I think I might love Python More

Why I love ObjectScript and why I think I might love Python More

I was looking at the thread of messages on the topic of "Performance when
constructing a comma-separated string", and I started writing a response but got
distracted, the page refreshed, and I lost my text. I couldn't spend the time
rewriting my response, so I started writing this document instead.

I started writing MUMPS at the beginning of my career. I wrote very tight and
dense code blocks where exercises such as the string example were authentic
challenges. We squeezed every last bit of performance out of the Digital DEC or
VAX servers, where we planned where a key global would be positioned on a disk
platter. When Caché was released, we were still working with M/SQL. There was
a period where I was involved in several performance comparisons between
Caché against Oracle, Sybase and SQL Server. We would design a schema of a
few tables, populate them with several million records and then execute many
searches on the resultant database. I used to write two versions of the SQL
statements. One version would be a pure SQL statement, and the other would be
a custom query which I would write into the class definition. The bulk of the logic
goes into the 'Fetch', and I would craft my 'Fetch' method to maximize the indices I
had defined and use ^CachéTemp for any interim results complex joins. I would
sometimes job off one or more sub-queries that would create the interim temp
globals and then resolve the joins once all of the jobbed processes had finished.
The result could be summarised as follows:

Inserting data into the database using SQL or Caché Objects was always faster
than any other DB. Using pure COS and direct global sets was an order of
magnitude faster than SQL, Objects, and any other databases. The resultant
database would be roughly half the size of the database created by any of the
relational databases.

When I compared the code that I wrote in my 'Fetch' method against the code

Page 1 of 9

https://community.intersystems.com/user/nigel-salm-1

Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

generated by the Caché SQL Engine, I used fewer variables, 25% fewer lines of
code, and the code was more readable.

The number of physical data block reads would be roughly the same as the code
generated by M/SQL. However, the number of logical reads from the Global Buffer
Pool would be 20% less than M/SQL.

I made use of every trick in the "MUMPS Developers Cook Book". I used
commands such as 'execute', 'job' (effectively creating threads to handle sub-
queries in parallel), indirection, and post-conditions. We recommend that
developers don't use these language features to write readable and maintainable
code by other developers.

I would initialize variables in the form:

set (a,b,c,d)="",(x,y,z)=0,p1=+$h,p2=...,pN=99

I squeezed as many expressions into one line of code as I possibly could. We
believed a cost was incurred when reading each line of code into the "execute
buffer". Therefore the number of lines of code executed always had a direct and
inverse effect on performance.

When I work on code written by some other developer, and I notice that there are
blocks of code consisting of one set command per line, I get somewhat worked up
and invariably compress those 30 lines down into one. I fell in love with Caché
Objects. Twenty-five years later, that love affair has outlasted two long term
relationships and marriage. Class definitions, with precise and very readable
property names, bitmap indexing on everything unless find indexing can do better.
Parent-Child relationships rather than One-Many when I can. I will use a custom
primary key in code tables when bitmap indexing is not required because set
record=$g(^global(code)) will always be faster than

set record="",rowId=$o(^IndexGlobal("IndexName",code,""))
set:$l(rowId) record=^Global(rowId)

There were some forms of SQL select statements that M/SQL either didn't support
or performed poorly. In general, Caché was 2-3 times faster than any other
database.

Page 2 of 9

Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

Over the years, the SQL engine has significantly improved. Bitmap and iFind
indexing were introduced. We use iFind indexing on the Names and Addresses of
Patients in a database of 15 million Patients. Every other field is bitmap indexed.
When we receive a FHIR Patient Search with several parameters, we support all
FHIR specification qualifiers and operators. We construct an SQL statement that
starts with a join across all of the entities of FHIR Patient, which we store in
persisted classes. I am pushing for us to use the IRIS for Health repository for our
next phase of development. IRIS has had two releases and has matured since I
first worked with it in version 2019.1. The join is followed by any iFind clauses on
Names and Addresses if specified in the search criteria. Then AND/OR clauses
are added for any fields in the search criteria that we know are supported with
Bitmap Indices. The deterministic or probabilistic searches we perform are so
accurate and so fast it still has me jumping around in excitement (at my age!!!).

I must confess that I had never liked SQL when I was one of an ever-shrinking
pool of developers that wrote MUMPS code in the late '80s. My peers were all too
quick to jump into bed with Oracle or SQL Server, and it was difficult at times not
to fall into a state of despair as I listened to the naysayers shouting, "MUMPS is
dead.

Then, at the annual MUMPS Conference in Dublin, we woke up one morning to a
note pushed under our doors announcing that InterSystems had bought DTM. At a
conference held a year later in Birmingham, I was working for InterSystems, and
we were showing off Visual Basic forms using the Caché dll that we had acquired
when we bought Data Tree. Micronetics were on the stand opposite ours, and
they didn't have a dll. Their sound system was louder than ours, but we knew we
had won. It would take another year before we had bought DSM from Digital and
finally MSM from Micronetics, and then there was no holding back. I remember
showing off M/SQL to a customer in Birmingham who wrote accounting software.
One of their customers was Barings Bank who had just lost 859 000 000 GBP due
to their rogue trader Nick Leason. I couldn't help but set up my example database
so that I could run an SQL query that was probably no more complex than
"SELECT sum(Total) from Accounts WHERE and AccountNumber="666..".
The account number was the account number that Nick Leason had used to hide
the trading he was doing to rescue his situation that was getting worse with every
single ring of the Singapore Stock Market Trading Floor Bell. I remember standing
there giggling quietly, partly because of the implicit reference to the Barings Bank
Collapse but also because the query actually executed, provided the correct
answer and didn't take more than a minute to run (none of these things was
certainties then).

Page 3 of 9

Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

That was the only memory that I have of enjoying SQL. I would deal with one
audience after another audience of Oracle and SQL Server DBA's where I
demonstrated Caché, Caché and VB, Caché Objects and Caché SQL and
delighting in Caché Objects: so elegant, so obvious, so malleable, so
readable. Object syntax (in any language) is so much more natural to me than any
SQL statement and when we did get the opportunity to take a prospective
customers application schema and run it through the SQL importer and translate
the set of stored procedures that the prospective customer would include in the
schema into either Caché Objects or pure Caché Globals I became very
acquainted with reading the SQL execution plan and the generated stored query
and getting into long conversations with Aviel Klausner about the one SQL query
that the prospect customer had given me that wasn't working and that would make
the difference between: watching the Oracle DBA's slink out of the conference
room back to the safety of their index tuning and the guaranteed 6 hours of
downtime that their systems had every day while backups were being done,
where they could coax their relational applications back to life in readiness for the
next days trading, or the excitement of winning over a customer that we had been
pursuing for months who was more interested in the speed of Caché, the Object
Orientation, the gateways to .Net or Java, the simple elegance of the CSP broker.
I think that the question: "Why write applications INSIDE a DB environment at all?"
isn't a question at all. Firstly, I create a database that will contain my code and
another for my globals and right there, I have a point of separation. We have all
grown up over the last 25+ years thinking of Classes, Objects, ObjectScript and
Globals as being all lumped together. I argue that at runtime, the code executing
in the code buffer is OBJ code. OBJ code is essentially a mixture of compiled C
code, pure machine code optimized for the platform it is running on, and some
remnants of the class definition that is required if you are using $classname,
$classmethod, $property and other factors. Much of the 'engine' of Caché or IRIS
is written in ObjectScript is a testament that ObjectScript is a perfect language to
work with. It is a language that can be explicit, can be abbreviated, can be very
compact. It contains all of the operators and constructs of any modern language
(if, ifelse, else, try - catch, while, for [to be fair our implementation of FOR is
wonderful: | for i="apples","pears","Nigel","Fruit" {} | for {} | for
i=$$$StartGValue():$$$Increment():$$$EndValue() |]). If one of the early MUMPS
creators had called $order "$next", it would immediately be recognizable as
Next() as found in every other language that iterates through an array. $PIECE is
a bit quirky, but only because every other database uses fixed-length fields. The
concept of delimited strings used as a database construct is alien to a SQL DBA.
When you look at the compiled machine code of either form of database, the
machine instructions are moving through the string, character by character, and

Page 4 of 9

Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

either counting the number of characters or looking for a specific field delimiter,
whilst counting the characters as it does so.

$list squeezed a little bit of performance gain over $piece but at the cost of an
extra byte or two at the beginning of each field but still less space-consuming than
fixed-length fields. The reason why all of the system code is written in
ObjectScript, even to this day, is because it is a very efficient language, it is a
very readable language, and when the core Caché/IRIS developers, Scott Jones,
Dave McCalldon, Mo Chung, required something where ObjectScript was
inadequate, they would write that in C and bury it in the Kernal.

Next: If I have a table definition and I have fields that require some form of
formatting or validation over and above the obvious constraints of type and length,
then I want to write that code and keep it nice and close to the field definition itself.
Why would I want to go into another language, another environment, to write that
validation? The relational databases use stored procedures and triggers to handle
such validation using the SQL language to express the validation logic. Find me a
programmer who would rather use SQL to write sometimes complex logic rather
than Basic or C# or C++ or OjectScript or Python, and I'll buy you a beer when I
next pass through Vienna :-)

At university, I learned to program in Fortran and Pascal. Pascal was a perfectly
readable usable language and being an easily excitable 19-year-old, it fascinated
me that the Pascal Compiler could be written in Pascal. Later on, I learned
COBOL. WTF??? And yet, I have a friend who is a developer for Sage
Accounting, and he writes COBOL because Sage Accounting was written in
COBOL. Page after Page of the most verbose, unreadable, unusable language I
have ever come across. In fact, there is a ton of COBOL out there.

You would think that Pascal would have easily surpassed COBAL and even
Basic. But it didn't. And why didn't it? Easy, it wasn't used in Banking applications
(COBOL was used extensively in large Mainframe Batch Processing Applications
such as Accounting). We joked that we couldn't get Banks to buy into the Caché
Model because we weren't expensive enough. It wasn't that ObjectScript couldn't
do the transactional processing of those Banking applications, and we were
demonstrably faster than whatever technology they were using. The problem was
that they had spent so much money on the systems they had and the hardware
required to run those overnight Batches in time for the Banks to open at 9 am the
following day. The expensive server rooms with radon gas and filtration systems

Page 5 of 9

Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

remove even the smallest dust particles lest a particle land on a disk platter or
mag tape and render an entire day's worth of account transactions useless.

Pascal should have outlived Basic, and it possibly would have if Microsoft hadn't
built Visual Basic and gone into competition with Delphi and Borland. Their IDE
looked exactly like VB but used Pascal rather than Basic. And this was all
happening while Microsoft brought out C# because they had to accommodate all
those C++ programmers, and they certainly weren't going to win over the C++
programmers with Basic. They were also threatening to bring out their version of
Java or remove support for Java because it annoyed them that Java ran on
hardware platforms that Windows would never be able to run on. It was only when
technology advances made the concept of VM's or Containers a realistic
deployment option that Microsoft backed off. And so Pascal and Delphi just
disappeared. I did a quick search in Google now, and there is a Pascal Interpreter
for Android, so it is still out there.

Given that Pascal was just a language as opposed to Basic, which was just a
language in one sense. But Microsoft used it for scripting in applications such as
Excel and a proprietary connection to SQL Server, which allowed them to bind two
intrinsically unsuitable environments together without the pesty hassle of
complying with the ODBC and JDBC standards. Standards were heavily backed
by Oracle, Sybase and pretty much everyone who had to provide a gateway to
their proprietary versions of SQL. And so Basic lived on, and I'm happy that I
started my programming career with Pascal, followed by a rude awakening when I
wrote COBOL programs for a year working for an insurance company, when I
arrived on the wet and grey shores of the UK and walked into my first job, which,
just happened to be a MUMPS house. Every evolution of MUMPS to
CachéObjectScript, then Objects, followed by Object Gateways to .Net and Java,
Caché Basic and MultiValueBasic and now Python. Python takes me full circle,
and in a sense, proves the point that ObjectScript is not some aberration lumped
onto a non-relational outcast of database technology.

Caché Globals, these multidimensional sparse arrays that are so very convenient
to the very nature of Healthcare data to such an extent that no matter how hard
Oracle and Microsoft have tried to consume that market space and though they
may well have killed off Pascal and Fortran and even basic, they haven't been
able to kill off InterSystems. I remember attending an Oracle seminar on "Oracle
for Health". The presenter was going on about Oracle in HealthCare which, she
assured us, would take over the Healthcare Market once and for all. I put my hand
up and asked, "Isn't that what you have claimed with every major release for years

Page 6 of 9

Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

now? You failed then. What makes you think you'll do any better this time
around?" She stared at me, "Who are you?" she asked. I replied: "I am from
InterSystems. We dominate the Healthcare market and have done for 35 years.
We have done so because our technology was born in Massachusetts General
Hospital, and guess what. They still run their core systems on our Technologies.".
At which point, two burly security guards removed me from the auditorium.

So you have Oracle with their pSQL, and they own Java. You have Microsoft with
SQL Server, C# and tSQL, and when you need to interact with Java, you are
constrained to JDBC. Likewise, if you live in Java and have to talk to SQL Server
tables, you are constrained to using ODBC, and where do we sit? Well, we have
this rather clever idea of having wrappers for .Net and Java. When using
ObjectScript, I instantiate an instance of Class A. It doesn't actually matter
whether Class A is actually a .Net class or a Java Class, or an ObjectScript Class
because I will instantiate those objects using precisely the same syntax in all
cases. Then I am going to invoke the instance or class methods to manipulate
those objects. It doesn't matter what the insides of those methods look like
because the syntax for interacting with those classes and their methods is
essentially identical no matter what they contain.

And along comes Python, which shares many features of ObjectScript in that it is
an interpreted language as opposed to a compiled language. It is very readable
and very usable. Just as Caché ObjectScript found a Niche in Unstructured Data,
Python found a Niche in the world of Mathematical Modelling, ML, AI and much,
much more. This is not a world that C# or Java are particularly comfortable in, and
nor is ObjectScript, for that matter. So InterSystems has concentrated on
providing increasingly powerful functionality for manipulating vast amounts of
unstructured data, throw in some iFind and iKnow, some very clever indexing
techniques and probability matching algorithms, and you then invite Python to
come and cuddle up to our multidimensional sparse arrays and bring with it, its
millions of baby .py's that do just about everything complex that you'll need. You
have a match made in heaven. Oh, and just in case, I forget to mention that
several architectures that dominate the world of web page development are all
based on JS (Angular.js, REACT.js, Vue.js, Bootstrap (ok, there is no JS, but it is
JS in all but name) and Node.js) and JS Arrays. JS isn't going away anytime soon.
However, it will be interesting to see where Golang will go if you catch my drift. I
have noticed that there have been entries based on JS arrays in the last couple of
code competitions. If there is one technology that understands arrays better than
any other technology, then it's IRIS.

And I think back to those days, sitting in my office at the company I worked for in
the heart of London. The company, at one point, had been full of MUMPS

Page 7 of 9

Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

programmers but then turned them into Relational SQL programmers and then
made them Redundant. I remember that feeling of beginning to question whether
my faith that MUMPS, being just the best language I had ever encountered, might
be wrong? The language and the companies that had built interpretations of that
language were going to die. And that made me very sad because by then, I had
learned five other programming languages (APL, Basic, Fortran, COBOL and
Pascal) before I discovered MUMPS, and MUMPS was just so straightforward.
Easy to write, easy to read, easy to deploy. In short, it was as natural to me as
English, and it had a rhythm that reminded me of the hymns we sang at the
Methodist school I attended:

Onward, Christian soldiers!

Marching as to war,

With the cross of Jesus

Going on before.

Christ, the royal Master,

Leads against the foe;

Forward into battle,

See his banners go!

But it didn't die. The song changed a bit:

Onboard Nigel Saaalllm

Flying off to War

With his ISC CreditCard

Going On Before.

John, the Master, McCormack

Leads against the foe (Microsoft)

Forward into Battle

Page 8 of 9

Why I love ObjectScript and why I think I might love Python More
Published on InterSystems Developer Community (https://community.intersystems.com)

See his Duty Frees Go

And CacheObjectScript was even better than MUMPS if that was possible, And
CacheObjects looked so cool when demonstrated to an audience for the first
few times, and CacheSQL left its M/SQL days behind and has become rather
good over the years. Still, I don't particularly appreciate writing much SQL, but
I have found a nice balance between Objects and SQL and Direct Global
references as I have relaxed. And whereas my code was heavily weighted
towards Direct Global references, with some OO and minimal SQL. When the
products reassured me that I could trust that the generated code was tight,
elegant, efficient, and readable, the balance has shifted again. Now I seldom
use direct global names, lots of Objects and a reasonable amount of SQL.

Working with Python will require my mind to see different patterns from my
ObjectScript Code. There are way too many '__abc__' and other strange
structures, but once I write a few pages of py code and then stand back. Just
as I do when painting an oil painting, the patterns will pop out at me. Just as I
see music as colour synesthesia, so too will my colour coded py programs
flowing across the page begin to resemble a little watercolour or even a heavy
oil painting. I will be delighted, and all will be right with the world.

#Coding Guidelines #ObjectScript #Python #InterSystems IRIS

 Source
URL:https://community.intersystems.com/post/why-i-love-objectscript-and-why-i-think-i-might-love-python-more

Page 9 of 9

https://community.intersystems.com/tags/coding-guidelines
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/python
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/why-i-love-objectscript-and-why-i-think-i-might-love-python-more

