
Running InterSystems IRIS in a FaaS mode with Kubeless
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Eduard Lebedyuk · Mar 5, 2022 6m read

Running InterSystems IRIS in a FaaS mode with Kubeless
Function as a service (FaaS) is a category of cloud computing services that provides a platform allowing
customers to develop, run, and manage application functionalities without the complexity of building and
maintaining the infrastructure typically associated with developing and launching an app. Building an
application following this model is one way of achieving a "serverless" architecture, and is typically used
when building microservices applications.

Wikipedia

FaaS is an extremely popular approach to running workloads in the cloud, allowing developers to focus on writing
code.

This article will show you how to deploy InterSystems IRIS methods in a FaaS way.

Install Kubernetes
First of all, install Kubernetes 1.16. There are a lot of guides available so that I won't be copying them here, but I'm
using minicube. With minicube to run kubernetes, it's enough to execute this command:

minikube start --kubernetes-version=v1.16.1

Install kubeless
Next, we will install kubeless. kubeless is a Kubernetes-native serverless framework that lets you deploy small bits
of code without worrying about the underlying infrastructure plumbing. It leverages Kubernetes resources to provide
auto-scaling, API routing, monitoring, troubleshooting, and more.

kubectl create ns kubeless
kubectl create -f https://github.com/kubeless/kubeless/releases/download/v1.0.8/kubel
ess-v1.0.8.yaml
kubectl get pods -n kubeless

Output should be something like this:

NAME READY STATUS RESTARTS AGE
kubeless-controller-manager-666ffb749-26vhh 3/3 Running 0 83s

You also need to install a kubeless client (on the same instance you have kubectl). You can get it here. Installation
on Linux is as simple as:

Page 1 of 5

https://community.intersystems.com/user/eduard-lebedyuk
https://en.wikipedia.org/wiki/Function_as_a_service
https://minikube.sigs.k8s.io/docs/handbook/config/
https://github.com/vmware-archive/kubeless
https://github.com/vmware-archive/kubeless/releases

Running InterSystems IRIS in a FaaS mode with Kubeless
Published on InterSystems Developer Community (https://community.intersystems.com)

sudo install kubeless /usr/local/bin/kubeless

Test kubeless
First, let's deploy a simple Python function to check that kubeless works.

Create test.py:

def hello(event, context):
 return event['data']

To read more about function environment check this doc, generally function accepts two arguments - event and
context with this data:

event:
 data: # Event data
 foo: "bar" #
 The data is parsed as JSON when required
 event-id: "2ebb072eb24264f55b3fff" # Event ID
 event-type: "application/json" # Event content type
 event-time: "2009-11-10 23:00:00 +0000 UTC" # Timestamp of the event source
 event-namespace: "kafkatriggers.kubeless.io" # Event emitter
 extensions: # Optional parameters
 request: ... # Reference to the request received
 response: ... # Reference to the response to send

 # (specific properties will depend on the function language)
context:
 function-name: "pubsub-nodejs"
 timeout: "180"
 runtime: "nodejs6"
 memory-limit: "128M"

 Now we can deploy our hello function by specifying our file with a function and a runtime:

kubeless function deploy hello --runtime python3.7 --from-
file test.py --handler test.hello
kubeless function ls hello

And let's test it:

kubeless function call hello --data 'Hello world!'

You should receive Hello World! as an answer.

Add IRIS config
Next we need to add an InterSystems IRIS function handler, to do that open kubeless config for edit:

Page 2 of 5

https://github.com/vmware-archive/kubeless/blob/master/docs/kubeless-functions.md

Running InterSystems IRIS in a FaaS mode with Kubeless
Published on InterSystems Developer Community (https://community.intersystems.com)

kubeless get-server-config
kubectl get -n kubeless configmaps -o yaml > configmaps.yaml
kubectl edit -n kubeless configmaps

Add this entry to runtime-images array and save:

{"ID": "iris","depName": "","fileNameSuffix": ".cls","versions": [{"images": [{"image
": "eduard93/kubeless-iris-
runtime:latest","phase": "runtime"}],"name": "iris2022.1","version": "2022.1"}]}

Restart kubeless controller for the changes to take effect.

kubectl delete pod -n kubeless -l kubeless=controller

Build IRIS function CRD and publish it
Now let's write our first function in InterSystems IRIS:

Class User.Test {

ClassMethod hi(event, context) As %Status
{
 if $isObject(event) {
 write event.Text + event.Text
 } else {
 write "HELLO FROM IRIS"
 }
 quit $$$OK
}
}

Next, we need to build a function CRD:

Here's our template:

function.yaml

And we need to fill:

name: function name (for kubeless)
handler: class.name_method (for InterSystems IRIS)
function body: add at the end (don't forget tabs!)

So our CRD looks like this:

function_demo.yaml

This can be easily automated. On Linux execute:

Page 3 of 5

Running InterSystems IRIS in a FaaS mode with Kubeless
Published on InterSystems Developer Community (https://community.intersystems.com)

sed 's/!name!/iris-
demo/; s/!handler!/User_Test.hi/' function.yaml > function_demo.yaml
sed 's/^/ /' User.Test.cls >> function_demo.yaml

And on Windows (PowerShell):

Get-Content function.yaml | ForEach-Object { $_ -replace "!handler!", "User_Test.hi"
-replace "!name!", "iris-demo" } | Set-Content function_demo.yaml
" " + [string]((Get-Content User.Test.cls) -join "`r`n ") | Add-
Content function_demo.yaml

Now we need to publish our CRD in kubeless:

kubectl apply -f function_demo.yaml

Test IRIS function
First, let's see that the function is deployed and ready (can take a few minutes the first time):

kubeless function ls

And now call it:

kubeless function call iris-demo --data '{"Text":123}'

If you're on Windows, call the function like this (same for all other calls with escaped double quotes):

kubeless function call iris-demo --data '{\"Text\":123}'

Anyway, the response should be 456 since 123 is a number.

HTTP access
kubeless also offers HTTP access. To test this, use the kubectl proxy command:

kubectl proxy -p 8081

Next, send this request using your preferred REST API client:

GET http://localhost:8081/api/v1/namespaces/default/services/iris-demo:http-function-
port/proxy/

{"Text":111}

Here's how it looks like in Postman:

Page 4 of 5

Running InterSystems IRIS in a FaaS mode with Kubeless
Published on InterSystems Developer Community (https://community.intersystems.com)

Next, let's publish it on the internet.

There are two approaches. Preferably configure ingress as described here.

Additionally you can patch function service:

kubectl get svc
kubectl patch svc iris-demo -p '{"spec": {"type": "LoadBalancer"}}'
kubectl get svc

Clean up
To remove a deployed function call:

kubectl delete -f function_demo.yaml

Conclusion
While this is undoubtedly a proof-of-concept and not a production-grade solution, this approach demonstrates that
it's possible to run InterSystems IRIS workloads using the serverless, FaaS approach.

Links

Minicube
Kubeless
InterSystems IRIS runtime

#Cloud #Docker #InterSystems IRIS

 Source URL:https://community.intersystems.com/post/running-intersystems-iris-faas-mode-kubeless

Page 5 of 5

https://github.com/vmware-archive/kubeless/blob/master/docs/http-triggers.md
https://minikube.sigs.k8s.io/docs/handbook/config/
https://github.com/vmware-archive/kubeless
https://github.com/eduard93/kubeless-iris-runtime
https://community.intersystems.com/tags/cloud
https://community.intersystems.com/tags/docker
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/running-intersystems-iris-faas-mode-kubeless

